populism_model327 / README.md
AnonymousCS's picture
End of training
40c76d8 verified
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: populism_model327
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# populism_model327
This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6826
- Accuracy: 0.9331
- 1-f1: 0.5217
- 1-recall: 0.5806
- 1-precision: 0.4737
- Balanced Acc: 0.7687
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.3717 | 1.0 | 62 | 0.5365 | 0.9412 | 0.5397 | 0.5484 | 0.5312 | 0.7580 |
| 0.3292 | 2.0 | 124 | 0.5637 | 0.9047 | 0.4337 | 0.5806 | 0.3462 | 0.7535 |
| 0.2871 | 3.0 | 186 | 0.6826 | 0.9331 | 0.5217 | 0.5806 | 0.4737 | 0.7687 |
### Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0