Anuj02003's picture
Upload 2 files
1f5812b verified
import streamlit as st
from transformers import pipeline
import requests
import pandas as pd
import re
# Agent Classes
class UseCaseAgent:
def __init__(self):
"""Agent to generate AI/ML use cases."""
self.generator = pipeline("text-generation", model="gpt2")
def generate_use_cases(self, industry, trends):
"""Generate 3 use cases with a brief debrief based on industry and trends."""
prompt = (
f"Industry: {industry}\n"
f"Trends: {trends}\n"
f"Suggest 3 AI/ML/GenAI use cases with a brief debrief for each to improve operations and customer satisfaction:"
"\n1. "
)
result = self.generator(prompt, max_length=300, num_return_sequences=1)
use_cases = result[0]["generated_text"]
# Format the output into a list by extracting each line that starts with a number
use_case_list = re.findall(r'\d+\.\s*(.*?)(?:\n|$)', use_cases)
# Limit the use cases to 3
return use_case_list[:3]
class ResourceAgent:
def __init__(self):
"""Agent to search and retrieve datasets."""
pass
def search_huggingface(self, query):
"""Search datasets on HuggingFace."""
hf_url = f"https://huggingface.co/api/models?search={query}"
response = requests.get(hf_url)
return response.json()[:5] if response.status_code == 200 else []
def search_kaggle(self, query):
"""Search datasets on Kaggle."""
kaggle_url = f"https://www.kaggle.com/api/v1/datasets/list?search={query}"
response = requests.get(kaggle_url)
return response.json()[:5] if response.status_code == 200 else []
# Multi-Agent System
class MultiAgentSystem:
def __init__(self):
self.use_case_agent = UseCaseAgent()
self.resource_agent = ResourceAgent()
def process_query(self, industry_query, trends_query):
"""End-to-end query processing."""
use_cases = self.use_case_agent.generate_use_cases(industry_query, trends_query)
return use_cases
def fetch_datasets(self, use_cases):
"""Fetch relevant datasets based on generated use cases."""
keywords = self.extract_keywords(use_cases)
datasets = {}
for keyword in keywords:
hf_datasets = self.resource_agent.search_huggingface(keyword)
kaggle_datasets = self.resource_agent.search_kaggle(keyword)
datasets[keyword] = {
"huggingface": hf_datasets,
"kaggle": kaggle_datasets
}
return datasets
def extract_keywords(self, use_cases):
"""Extract relevant keywords from use cases for dataset search."""
# Simple keyword extraction: split by spaces and take the first two words as keywords
keywords = set()
for use_case in use_cases:
words = re.findall(r'\w+', use_case)
if words:
keywords.add(words[0]) # For simplicity, take the first word as a keyword
return list(keywords)
# Streamlit UI
def run_streamlit_ui():
st.title("Market Research & AI Use Case Generator")
st.write("Generate actionable insights and find relevant datasets.")
mas = MultiAgentSystem()
# Trends and Use Case Generation
st.header("AI/ML Use Case Generation")
industry_query = st.text_input("Enter industry/company:")
st.caption("Example: Automotive, Retail, Healthcare, etc.")
trends_query = st.text_input("Enter industry trends or focus areas:")
st.caption("Example: Supply chain optimization, Customer experience, etc.")
# Store use cases in session state
if "use_cases" not in st.session_state:
st.session_state["use_cases"] = []
if st.button("Generate Use Cases"):
with st.spinner("Generating insights..."):
st.session_state["use_cases"] = mas.process_query(industry_query, trends_query)
st.subheader("Proposed Use Cases")
for i, use_case in enumerate(st.session_state["use_cases"], start=1):
st.write(f"**Use Case {i}:** {use_case}")
# Add a button to search for relevant datasets
if st.session_state["use_cases"]:
st.subheader("Search for Relevant Datasets")
if st.button("Search Datasets"):
with st.spinner("Searching datasets..."):
datasets = mas.fetch_datasets(st.session_state["use_cases"])
for keyword, dataset_info in datasets.items():
st.write(f"### Datasets related to: {keyword}")
# HuggingFace Datasets
st.subheader("HuggingFace Datasets")
if dataset_info["huggingface"]:
for dataset in dataset_info["huggingface"]:
dataset_id = dataset.get('modelId', 'Unknown ID')
dataset_url = f"https://huggingface.co/models/{dataset_id}"
st.write(f"- [{dataset_id}]({dataset_url})")
else:
st.write("No relevant datasets found on HuggingFace.")
# Kaggle Datasets
st.subheader("Kaggle Datasets")
if dataset_info["kaggle"]:
for dataset in dataset_info["kaggle"]:
dataset_title = dataset.get('title', 'Unknown Title')
dataset_url = dataset.get('url', '#')
st.write(f"- [{dataset_title}]({dataset_url})")
else:
st.write("No relevant datasets found on Kaggle.")
if __name__ == "__main__":
run_streamlit_ui()