|
import streamlit as st
|
|
from transformers import pipeline
|
|
import requests
|
|
import pandas as pd
|
|
import re
|
|
|
|
|
|
class UseCaseAgent:
|
|
def __init__(self):
|
|
"""Agent to generate AI/ML use cases."""
|
|
self.generator = pipeline("text-generation", model="gpt2")
|
|
|
|
def generate_use_cases(self, industry, trends):
|
|
"""Generate 3 use cases with a brief debrief based on industry and trends."""
|
|
prompt = (
|
|
f"Industry: {industry}\n"
|
|
f"Trends: {trends}\n"
|
|
f"Suggest 3 AI/ML/GenAI use cases with a brief debrief for each to improve operations and customer satisfaction:"
|
|
"\n1. "
|
|
)
|
|
result = self.generator(prompt, max_length=300, num_return_sequences=1)
|
|
use_cases = result[0]["generated_text"]
|
|
|
|
|
|
use_case_list = re.findall(r'\d+\.\s*(.*?)(?:\n|$)', use_cases)
|
|
|
|
|
|
return use_case_list[:3]
|
|
|
|
|
|
class ResourceAgent:
|
|
def __init__(self):
|
|
"""Agent to search and retrieve datasets."""
|
|
pass
|
|
|
|
def search_huggingface(self, query):
|
|
"""Search datasets on HuggingFace."""
|
|
hf_url = f"https://huggingface.co/api/models?search={query}"
|
|
response = requests.get(hf_url)
|
|
return response.json()[:5] if response.status_code == 200 else []
|
|
|
|
def search_kaggle(self, query):
|
|
"""Search datasets on Kaggle."""
|
|
kaggle_url = f"https://www.kaggle.com/api/v1/datasets/list?search={query}"
|
|
response = requests.get(kaggle_url)
|
|
return response.json()[:5] if response.status_code == 200 else []
|
|
|
|
|
|
|
|
class MultiAgentSystem:
|
|
def __init__(self):
|
|
self.use_case_agent = UseCaseAgent()
|
|
self.resource_agent = ResourceAgent()
|
|
|
|
def process_query(self, industry_query, trends_query):
|
|
"""End-to-end query processing."""
|
|
use_cases = self.use_case_agent.generate_use_cases(industry_query, trends_query)
|
|
return use_cases
|
|
|
|
def fetch_datasets(self, use_cases):
|
|
"""Fetch relevant datasets based on generated use cases."""
|
|
keywords = self.extract_keywords(use_cases)
|
|
datasets = {}
|
|
|
|
for keyword in keywords:
|
|
hf_datasets = self.resource_agent.search_huggingface(keyword)
|
|
kaggle_datasets = self.resource_agent.search_kaggle(keyword)
|
|
datasets[keyword] = {
|
|
"huggingface": hf_datasets,
|
|
"kaggle": kaggle_datasets
|
|
}
|
|
return datasets
|
|
|
|
def extract_keywords(self, use_cases):
|
|
"""Extract relevant keywords from use cases for dataset search."""
|
|
|
|
keywords = set()
|
|
for use_case in use_cases:
|
|
words = re.findall(r'\w+', use_case)
|
|
if words:
|
|
keywords.add(words[0])
|
|
return list(keywords)
|
|
|
|
|
|
|
|
def run_streamlit_ui():
|
|
st.title("Market Research & AI Use Case Generator")
|
|
st.write("Generate actionable insights and find relevant datasets.")
|
|
|
|
mas = MultiAgentSystem()
|
|
|
|
|
|
st.header("AI/ML Use Case Generation")
|
|
industry_query = st.text_input("Enter industry/company:")
|
|
st.caption("Example: Automotive, Retail, Healthcare, etc.")
|
|
trends_query = st.text_input("Enter industry trends or focus areas:")
|
|
st.caption("Example: Supply chain optimization, Customer experience, etc.")
|
|
|
|
|
|
if "use_cases" not in st.session_state:
|
|
st.session_state["use_cases"] = []
|
|
|
|
if st.button("Generate Use Cases"):
|
|
with st.spinner("Generating insights..."):
|
|
st.session_state["use_cases"] = mas.process_query(industry_query, trends_query)
|
|
st.subheader("Proposed Use Cases")
|
|
for i, use_case in enumerate(st.session_state["use_cases"], start=1):
|
|
st.write(f"**Use Case {i}:** {use_case}")
|
|
|
|
|
|
if st.session_state["use_cases"]:
|
|
st.subheader("Search for Relevant Datasets")
|
|
if st.button("Search Datasets"):
|
|
with st.spinner("Searching datasets..."):
|
|
datasets = mas.fetch_datasets(st.session_state["use_cases"])
|
|
|
|
for keyword, dataset_info in datasets.items():
|
|
st.write(f"### Datasets related to: {keyword}")
|
|
|
|
|
|
st.subheader("HuggingFace Datasets")
|
|
if dataset_info["huggingface"]:
|
|
for dataset in dataset_info["huggingface"]:
|
|
dataset_id = dataset.get('modelId', 'Unknown ID')
|
|
dataset_url = f"https://huggingface.co/models/{dataset_id}"
|
|
st.write(f"- [{dataset_id}]({dataset_url})")
|
|
else:
|
|
st.write("No relevant datasets found on HuggingFace.")
|
|
|
|
|
|
st.subheader("Kaggle Datasets")
|
|
if dataset_info["kaggle"]:
|
|
for dataset in dataset_info["kaggle"]:
|
|
dataset_title = dataset.get('title', 'Unknown Title')
|
|
dataset_url = dataset.get('url', '#')
|
|
st.write(f"- [{dataset_title}]({dataset_url})")
|
|
else:
|
|
st.write("No relevant datasets found on Kaggle.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_streamlit_ui()
|
|
|