wav2vec2-base-Tamil-large

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3015
  • Wer: 0.3470
  • Cer: 0.0610

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 6
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
5.2014 2.2472 300 3.2558 1.0 1.0
1.1765 4.4944 600 0.5245 0.7139 0.1482
0.4765 6.7416 900 0.4191 0.6080 0.1133
0.33 8.9888 1200 0.3494 0.4983 0.0910
0.2488 11.2360 1500 0.3163 0.4470 0.0811
0.1951 13.4831 1800 0.3326 0.4179 0.0748
0.1586 15.7303 2100 0.3135 0.3924 0.0702
0.1308 17.9775 2400 0.3070 0.3798 0.0668
0.1111 20.2247 2700 0.2999 0.3618 0.0635
0.0996 22.4719 3000 0.3015 0.3470 0.0610

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 1.18.3
  • Tokenizers 0.19.1
Downloads last month
114
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Anujgr8/wav2vec2-base-Tamil-large

Finetuned
(123)
this model