|
--- |
|
license: mit |
|
datasets: |
|
- AnyModal/flickr30k |
|
base_model: |
|
- meta-llama/Llama-3.2-1B |
|
- google/vit-base-patch16-224 |
|
language: |
|
- en |
|
pipeline_tag: image-to-text |
|
library_name: AnyModal |
|
tags: |
|
- vlm |
|
- vision |
|
- multimodal |
|
- AnyModal |
|
--- |
|
# AnyModal/Image-Captioning-Llama-3.2-1B |
|
|
|
**AnyModal/Image-Captioning-Llama-3.2-1B** is an image captioning model built within the [AnyModal](https://github.com/ritabratamaiti/AnyModal) framework. It integrates a Vision Transformer (ViT) encoder with the Llama 3.2-1B language model and has been trained on the Flickr30k dataset. The model demonstrates the integration of pre-trained vision and language components for generating descriptive captions from natural images. |
|
|
|
--- |
|
|
|
## Trained On |
|
|
|
This model was trained on the [Flickr30k Dataset](https://huggingface.co/datasets/AnyModal/flickr30k): |
|
|
|
**From Image Descriptions to Visual Denotations: New Similarity Metrics for Semantic Inference Over Event Descriptions** |
|
*Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, Svetlana Lazebnik* |
|
|
|
The dataset contains 31,000 images collected from Flickr, each annotated with five descriptive sentences written by human annotators, covering a variety of real-world scenes and events. |
|
|
|
--- |
|
|
|
## How to Use |
|
|
|
### Installation |
|
|
|
Install the necessary dependencies: |
|
|
|
```bash |
|
pip install torch transformers torchvision huggingface_hub tqdm matplotlib Pillow |
|
``` |
|
|
|
### Inference |
|
|
|
Below is an example of generating captions for an image using this model: |
|
|
|
```python |
|
import llm |
|
import anymodal |
|
import torch |
|
import vision |
|
from torch.utils.data import DataLoader |
|
import numpy as np |
|
import os |
|
from PIL import Image |
|
from huggingface_hub import hf_hub_download |
|
|
|
# Load language model and tokenizer |
|
llm_tokenizer, llm_model = llm.get_llm( |
|
"meta-llama/Llama-3.2-1B", |
|
access_token="GET_YOUR_OWN_TOKEN_FROM_HUGGINGFACE", |
|
use_peft=False, |
|
) |
|
llm_hidden_size = llm.get_hidden_size(llm_tokenizer, llm_model) |
|
|
|
# Load vision model components |
|
image_processor, vision_model, vision_hidden_size = vision.get_image_encoder("google/vit-base-patch16-224", use_peft=False) |
|
|
|
# Initialize vision tokenizer and encoder |
|
vision_encoder = vision.VisionEncoder(vision_model) |
|
vision_tokenizer = vision.Projector(vision_hidden_size, llm_hidden_size, num_hidden=1) |
|
|
|
# Initialize MultiModalModel |
|
multimodal_model = anymodal.MultiModalModel( |
|
input_processor=None, |
|
input_encoder=vision_encoder, |
|
input_tokenizer=vision_tokenizer, |
|
language_tokenizer=llm_tokenizer, |
|
language_model=llm_model, |
|
input_start_token="<|imstart|>", |
|
input_end_token="<|imend|>", |
|
prompt_text="The description of the given image is: ", |
|
) |
|
|
|
# Download pre-trained model weights |
|
if not os.path.exists("image_captioning_model"): |
|
os.makedirs("image_captioning_model") |
|
|
|
hf_hub_download("AnyModal/Image-Captioning-Llama-3.2-1B", filename="input_tokenizer.pt", local_dir="image_captioning_model") |
|
multimodal_model._load_model("image_captioning_model") |
|
|
|
# Generate caption for an image |
|
image_path = "example_image.jpg" # Path to your image |
|
image = Image.open(image_path).convert("RGB") |
|
processed_image = image_processor(image, return_tensors="pt") |
|
processed_image = {key: val.squeeze(0) for key, val in processed_image.items()} # Remove batch dimension |
|
|
|
# Generate caption |
|
generated_caption = multimodal_model.generate(processed_image, max_new_tokens=120) |
|
print("Generated Caption:", generated_caption) |
|
``` |
|
|
|
--- |
|
|
|
## Project and Training Scripts |
|
|
|
This model is part of the [AnyModal Image Captioning Project](https://github.com/ritabratamaiti/AnyModal/tree/main/Image%20Captioning). |
|
|
|
- **Training Script**: [train.py](https://github.com/ritabratamaiti/AnyModal/blob/main/Image%20Captioning/train.py) |
|
- **Inference Script**: [inference.py](https://github.com/ritabratamaiti/AnyModal/blob/main/Image%20Captioning/inference.py) |
|
|
|
Refer to the project repository for further implementation details and customization. |
|
|
|
--- |
|
|
|
## Project Details |
|
|
|
- **Vision Encoder**: Pre-trained Vision Transformer (ViT) model for visual feature extraction. |
|
- **Projector Network**: Projects visual features into a token space compatible with Llama 3.2-1B using a dense network. |
|
- **Language Model**: Llama 3.2-1B, a pre-trained causal language model for text generation. |
|
|
|
This implementation serves as a proof of concept, combining a ViT-based image encoder and a small language model. Future iterations could achieve improved performance by incorporating text-conditioned image encoders and larger-scale language models. |
|
|
|
|