AptaArkana's picture
Training complete
7ca7f66 verified
|
raw
history blame
2.75 kB
metadata
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - indonlu_nergrit
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: belajarner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: indonlu_nergrit
          type: indonlu_nergrit
          config: indonlu_nergrit_source
          split: validation
          args: indonlu_nergrit_source
        metrics:
          - name: Precision
            type: precision
            value: 0.8400335008375209
          - name: Recall
            type: recall
            value: 0.8631669535283993
          - name: F1
            type: f1
            value: 0.8514431239388794
          - name: Accuracy
            type: accuracy
            value: 0.949652118912081

belajarner

This model is a fine-tuned version of indolem/indobert-base-uncased on the indonlu_nergrit dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2914
  • Precision: 0.8400
  • Recall: 0.8632
  • F1: 0.8514
  • Accuracy: 0.9497

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 209 0.2655 0.8163 0.8718 0.8431 0.9424
No log 2.0 418 0.2315 0.8146 0.8546 0.8341 0.9486
0.04 3.0 627 0.2466 0.8291 0.8640 0.8462 0.9470
0.04 4.0 836 0.2412 0.8322 0.8623 0.8470 0.9503
0.03 5.0 1045 0.2636 0.8386 0.8898 0.8635 0.9521
0.03 6.0 1254 0.2830 0.8399 0.8623 0.8510 0.9497
0.03 7.0 1463 0.2848 0.8376 0.8657 0.8515 0.9500
0.013 8.0 1672 0.2914 0.8400 0.8632 0.8514 0.9497

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2