Flaubert_1406v3 / README.md
Apv's picture
Training in progress epoch 3
c2de472
|
raw
history blame
1.88 kB
metadata
license: mit
tags:
  - generated_from_keras_callback
model-index:
  - name: Apv/Flaubert_1406v3
    results: []

Apv/Flaubert_1406v3

This model is a fine-tuned version of flaubert/flaubert_base_cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.5829
  • Validation Loss: 0.5323
  • Train Accuracy: 0.7920
  • Epoch: 3

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1432, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.5878 0.5323 0.7920 0
0.5878 0.5323 0.7920 1
0.5851 0.5323 0.7920 2
0.5829 0.5323 0.7920 3

Framework versions

  • Transformers 4.30.2
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3