Flaubert_1619

This model is a fine-tuned version of flaubert/flaubert_base_cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2458
  • Validation Loss: 0.5339
  • Train Accuracy: 0.8170
  • Epoch: 19

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1432, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
1.0000 0.5841 0.7769 0
0.5526 0.5284 0.7845 1
0.3909 0.4806 0.8221 2
0.2798 0.5339 0.8170 3
0.2378 0.5339 0.8170 4
0.2514 0.5339 0.8170 5
0.2403 0.5339 0.8170 6
0.2373 0.5339 0.8170 7
0.2441 0.5339 0.8170 8
0.2529 0.5339 0.8170 9
0.2400 0.5339 0.8170 10
0.2337 0.5339 0.8170 11
0.2394 0.5339 0.8170 12
0.2383 0.5339 0.8170 13
0.2464 0.5339 0.8170 14
0.2464 0.5339 0.8170 15
0.2468 0.5339 0.8170 16
0.2427 0.5339 0.8170 17
0.2546 0.5339 0.8170 18
0.2458 0.5339 0.8170 19

Framework versions

  • Transformers 4.30.2
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.