ArchitRastogi's picture
fixing NDCG metric value
251fb2c verified
|
raw
history blame
5.3 kB
---
license: apache-2.0
datasets:
- ArchitRastogi/Italian-BERT-FineTuning-Embeddings
language:
- it
metrics:
- Recall@1
- Recall@100
- Recall@1000
- Average Precision
- NDCG@10
- NDCG@100
- NDCG@1000
- MRR@10
- MRR@100
- MRR@1000
base_model:
- dbmdz/bert-base-italian-xxl-uncased
new_version: "true"
pipeline_tag: feature-extraction
library_name: transformers
tags:
- information-retrieval
- contrastive-learning
- embeddings
- italian
- fine-tuned
- bert
- retrieval-augmented-generation
model-index:
- name: bert-base-italian-embeddings
results:
- task:
type: information-retrieval
dataset:
name: mMARCO
type: mMARCO
metrics:
- name: Recall@1000
type: Recall
value: 0.9719
- name: NDCG@1000
type: Normalized Discounted Cumulative Gain
value: 0.4391
- Average Precision: AP
type: Precision
value: 0.3173
source:
name: Fine-tuned Italian BERT Model Evaluation
url: https://github.com/unicamp-dl/mMARCO
---
# bert-base-italian-embeddings: A Fine-Tuned Italian BERT Model for IR and RAG Applications
## Model Overview
This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased) tailored for Italian language Information Retrieval (IR) and Retrieval-Augmented Generation (RAG) tasks. It leverages contrastive learning to generate high-quality embeddings suitable for both industry and academic applications.
## Model Size
- **Size**: Approximately 450 MB
## Training Details
- **Base Model**: [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased)
- **Dataset**: [Italian-BERT-FineTuning-Embeddings](https://huggingface.co/datasets/ArchitRastogi/Italian-BERT-FineTuning-Embeddings)
- Derived from the C4 dataset using sliding window segmentation and in-document sampling.
- **Size**: ~5GB (4.5GB train, 0.5GB test)
- **Training Configuration**:
- **Hardware**: NVIDIA A40 GPU
- **Epochs**: 3
- **Total Steps**: 922,958
- **Training Time**: Approximately 5 days, 2 hours, and 23 minutes
- **Training Objective**: Contrastive Learning
## Evaluation Metrics
Evaluations were performed using the [mMARCO](https://github.com/unicamp-dl/mMARCO) dataset, a multilingual version of MS MARCO. The model was assessed on 6,980 queries.
### Results Comparison
| Metric | Base Model (`dbmdz/bert-base-italian-xxl-uncased`) | `facebook/mcontriever-msmarco` | **Fine-Tuned Model** |
|---------------------|----------------------------------------------------|--------------------------------|----------------------|
| **Recall@1** | 0.0026 | 0.0828 | **0.2106** |
| **Recall@100** | 0.0417 | 0.5028 | **0.8356** |
| **Recall@1000** | 0.2061 | 0.8049 | **0.9719** |
| **Average Precision** | 0.0050 | 0.1397 | **0.3173** |
| **NDCG@10** | 0.0043 | 0.1591 | **0.3601** |
| **NDCG@100** | 0.0108 | 0.2086 | **0.4218** |
| **NDCG@1000** | 0.0299 | 0.2454 | **0.4391** |
| **MRR@10** | 0.0036 | 0.1299 | **0.3047** |
| **MRR@100** | 0.0045 | 0.1385 | **0.3167** |
| **MRR@1000** | 0.0050 | 0.1397 | **0.3173** |
**Note**: The fine-tuned model significantly outperforms both the base model and `facebook/mcontriever-msmarco` across all metrics.
## Usage
You can load and use the model directly with the Hugging Face Transformers library:
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("ArchitRastogi/bert-base-italian-embeddings")
model = AutoModelForMaskedLM.from_pretrained("ArchitRastogi/bert-base-italian-embeddings")
# Example usage
text = "Stanchi di non riuscire a trovare il partner perfetto?"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
```
## Intended Use
This model is intended for:
- Information Retrieval (IR): Enhancing search engines and retrieval systems in the Italian language.
- Retrieval-Augmented Generation (RAG): Improving the quality of generated content by providing relevant context.
Suitable for both industry applications and academic research.
## Limitations
- The model may inherit biases present in the C4 dataset.
- Performance is primarily evaluated on mMARCO; results may vary with other datasets.
---
## Contact
**Archit Rastogi**
📧 [email protected]