metadata
library_name: keras
license: mit
Model description
A very simple model that converts an image into a number!
the hepler function
(requirements: numpy Pillow
)
import numpy as np
from PIL import Image
def predict(model, img):
pil_image = img
pil_image = pil_image.resize((64, 64))
image_array = np.array(pil_image) / 255.0
image_array = np.expand_dims(image_array, axis=0)
input_shape = (64, 64, pil_image.mode == 'RGB' and 3 or 1)
decimal_prediction = model.predict(image_array)[0][0]
return decimal_prediction
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
Hyperparameters | Value |
---|---|
name | Adam |
weight_decay | None |
clipnorm | None |
global_clipnorm | None |
clipvalue | None |
use_ema | False |
ema_momentum | 0.99 |
ema_overwrite_frequency | None |
jit_compile | False |
is_legacy_optimizer | False |
learning_rate | 0.0010000000474974513 |
beta_1 | 0.9 |
beta_2 | 0.999 |
epsilon | 1e-07 |
amsgrad | False |
training_precision | float32 |