framing_classification_longformer

This model is a fine-tuned version of allenai/longformer-base-4096 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4961
  • Accuracy: 0.9068
  • F1: 0.9452
  • Precision: 0.9265
  • Recall: 0.9646

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8485 1.0 5152 0.8574 0.8323 0.9085 0.8323 1.0
0.7968 2.0 10304 0.8441 0.8323 0.9085 0.8323 1.0
0.847 3.0 15456 0.8049 0.8323 0.9085 0.8323 1.0
0.8677 4.0 20608 0.7919 0.8323 0.9085 0.8323 1.0
0.8778 5.0 25760 0.8980 0.8323 0.9085 0.8323 1.0
0.7563 6.0 30912 0.8299 0.8323 0.9085 0.8323 1.0
0.661 7.0 36064 0.6065 0.8882 0.9357 0.8973 0.9776
0.8207 8.0 41216 0.5387 0.8975 0.9410 0.9038 0.9813
0.6872 9.0 46368 0.5960 0.8602 0.9212 0.8680 0.9813
0.4596 10.0 51520 0.4961 0.9068 0.9452 0.9265 0.9646

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AriyanH22/frame_classification_longformer

Finetuned
(83)
this model