Super_Detection_Model2
This model is a fine-tuned version of ArrayDice/Super_Detection_Model on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1298
- Map: 0.1808
- Map 50: 0.3493
- Map 75: 0.1691
- Map Small: 0.1145
- Map Medium: 0.2679
- Map Large: 0.2383
- Mar 1: 0.125
- Mar 10: 0.2435
- Mar 100: 0.2784
- Mar Small: 0.2083
- Mar Medium: 0.3302
- Mar Large: 0.4376
- Map Car: 0.3117
- Mar 100 Car: 0.4185
- Map Hgv: 0.3441
- Mar 100 Hgv: 0.5338
- Map Motorcycle: 0.0675
- Mar 100 Motorcycle: 0.1613
- Map Other: 0.0
- Mar 100 Other: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Car | Mar 100 Car | Map Hgv | Mar 100 Hgv | Map Motorcycle | Mar 100 Motorcycle | Map Other | Mar 100 Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.4212 | 1.0 | 1431 | 1.4437 | 0.0997 | 0.23 | 0.0726 | 0.0488 | 0.1966 | 0.1457 | 0.0912 | 0.1795 | 0.2091 | 0.14 | 0.2742 | 0.3388 | 0.173 | 0.3266 | 0.201 | 0.4018 | 0.0248 | 0.1078 | 0.0 | 0.0 |
1.5144 | 2.0 | 2862 | 1.3895 | 0.1133 | 0.2499 | 0.0908 | 0.0571 | 0.2007 | 0.1638 | 0.0939 | 0.1896 | 0.2221 | 0.1557 | 0.2747 | 0.3723 | 0.1975 | 0.3312 | 0.2273 | 0.4349 | 0.0286 | 0.1221 | 0.0 | 0.0 |
1.5085 | 3.0 | 4293 | 1.3969 | 0.1103 | 0.2537 | 0.0832 | 0.0554 | 0.2014 | 0.1627 | 0.0902 | 0.1783 | 0.2087 | 0.1443 | 0.2775 | 0.3275 | 0.2029 | 0.3265 | 0.2201 | 0.4265 | 0.0181 | 0.0819 | 0.0 | 0.0 |
1.4486 | 4.0 | 5724 | 1.4264 | 0.105 | 0.2365 | 0.0844 | 0.0537 | 0.1969 | 0.1555 | 0.0893 | 0.1759 | 0.2053 | 0.1335 | 0.2784 | 0.3643 | 0.1822 | 0.3185 | 0.217 | 0.4126 | 0.0208 | 0.0902 | 0.0 | 0.0 |
1.4493 | 5.0 | 7155 | 1.3755 | 0.1124 | 0.2532 | 0.0866 | 0.0571 | 0.2053 | 0.1307 | 0.0949 | 0.1909 | 0.2208 | 0.152 | 0.2766 | 0.3861 | 0.2078 | 0.3336 | 0.215 | 0.4231 | 0.0268 | 0.1265 | 0.0 | 0.0 |
1.4102 | 6.0 | 8586 | 1.3164 | 0.1195 | 0.2565 | 0.1016 | 0.0629 | 0.214 | 0.1613 | 0.0987 | 0.1957 | 0.2251 | 0.154 | 0.2865 | 0.4032 | 0.2229 | 0.3549 | 0.229 | 0.4187 | 0.0262 | 0.127 | 0.0 | 0.0 |
1.4181 | 7.0 | 10017 | 1.3534 | 0.1189 | 0.2556 | 0.0965 | 0.0657 | 0.2132 | 0.1558 | 0.0949 | 0.1971 | 0.2235 | 0.1575 | 0.2845 | 0.391 | 0.2206 | 0.3356 | 0.2295 | 0.4299 | 0.0255 | 0.1284 | 0.0 | 0.0 |
1.3845 | 8.0 | 11448 | 1.3302 | 0.1306 | 0.2716 | 0.1133 | 0.0726 | 0.223 | 0.1469 | 0.1014 | 0.1945 | 0.2239 | 0.15 | 0.2913 | 0.4012 | 0.2344 | 0.3495 | 0.2513 | 0.4369 | 0.0369 | 0.1093 | 0.0 | 0.0 |
1.3262 | 9.0 | 12879 | 1.2996 | 0.1393 | 0.288 | 0.1206 | 0.0805 | 0.2317 | 0.1548 | 0.1071 | 0.2058 | 0.238 | 0.165 | 0.3017 | 0.4235 | 0.2442 | 0.3655 | 0.2631 | 0.4736 | 0.0498 | 0.1127 | 0.0 | 0.0 |
1.3128 | 10.0 | 14310 | 1.2569 | 0.1435 | 0.2923 | 0.1259 | 0.0792 | 0.2384 | 0.2133 | 0.1099 | 0.2132 | 0.2433 | 0.1713 | 0.3085 | 0.4116 | 0.2575 | 0.3721 | 0.2792 | 0.4794 | 0.0372 | 0.1216 | 0.0 | 0.0 |
1.2872 | 11.0 | 15741 | 1.2379 | 0.1484 | 0.2977 | 0.1364 | 0.0835 | 0.2432 | 0.1956 | 0.1161 | 0.225 | 0.2578 | 0.1811 | 0.3194 | 0.4301 | 0.2601 | 0.382 | 0.284 | 0.5001 | 0.0494 | 0.149 | 0.0 | 0.0 |
1.3069 | 12.0 | 17172 | 1.2271 | 0.1469 | 0.2997 | 0.1295 | 0.0814 | 0.2445 | 0.215 | 0.1092 | 0.2168 | 0.2497 | 0.1769 | 0.3102 | 0.406 | 0.2629 | 0.3817 | 0.2836 | 0.4666 | 0.0412 | 0.1505 | 0.0 | 0.0 |
1.2587 | 13.0 | 18603 | 1.2020 | 0.1558 | 0.3127 | 0.1424 | 0.0907 | 0.2484 | 0.2203 | 0.1115 | 0.2232 | 0.2566 | 0.1833 | 0.3153 | 0.4394 | 0.2743 | 0.3866 | 0.2986 | 0.4951 | 0.0502 | 0.1446 | 0.0 | 0.0 |
1.2236 | 14.0 | 20034 | 1.1696 | 0.1671 | 0.3292 | 0.1585 | 0.1026 | 0.2555 | 0.222 | 0.1199 | 0.2325 | 0.2633 | 0.1887 | 0.3195 | 0.4303 | 0.2919 | 0.4009 | 0.3149 | 0.4924 | 0.0619 | 0.1598 | 0.0 | 0.0 |
1.1969 | 15.0 | 21465 | 1.1582 | 0.1733 | 0.3408 | 0.1625 | 0.1052 | 0.2628 | 0.2374 | 0.1228 | 0.2386 | 0.2712 | 0.1985 | 0.3235 | 0.4386 | 0.2948 | 0.4077 | 0.3294 | 0.5113 | 0.0689 | 0.1657 | 0.0 | 0.0 |
1.1768 | 16.0 | 22896 | 1.1394 | 0.1796 | 0.3415 | 0.168 | 0.112 | 0.266 | 0.2352 | 0.1263 | 0.2426 | 0.2771 | 0.2058 | 0.3287 | 0.4285 | 0.3014 | 0.4149 | 0.342 | 0.527 | 0.075 | 0.1667 | 0.0 | 0.0 |
1.1729 | 17.0 | 24327 | 1.1350 | 0.1821 | 0.3473 | 0.1733 | 0.1149 | 0.2693 | 0.2358 | 0.1282 | 0.2423 | 0.2773 | 0.2056 | 0.3316 | 0.4432 | 0.3064 | 0.4151 | 0.3507 | 0.5397 | 0.0715 | 0.1544 | 0.0 | 0.0 |
1.1745 | 18.0 | 25758 | 1.1336 | 0.1808 | 0.3482 | 0.1689 | 0.1134 | 0.2684 | 0.2368 | 0.1253 | 0.2426 | 0.2775 | 0.2065 | 0.3314 | 0.4412 | 0.3114 | 0.4172 | 0.3432 | 0.5336 | 0.0687 | 0.1593 | 0.0 | 0.0 |
1.1518 | 19.0 | 27189 | 1.1293 | 0.181 | 0.3487 | 0.1688 | 0.1144 | 0.2687 | 0.2398 | 0.1244 | 0.2427 | 0.2771 | 0.2066 | 0.3308 | 0.4376 | 0.3121 | 0.4184 | 0.3448 | 0.5333 | 0.0672 | 0.1569 | 0.0 | 0.0 |
1.1597 | 20.0 | 28620 | 1.1298 | 0.1808 | 0.3493 | 0.1691 | 0.1145 | 0.2679 | 0.2383 | 0.125 | 0.2435 | 0.2784 | 0.2083 | 0.3302 | 0.4376 | 0.3117 | 0.4185 | 0.3441 | 0.5338 | 0.0675 | 0.1613 | 0.0 | 0.0 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.