File size: 8,064 Bytes
3258bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
base_model: ArrayDice/Super_Detection_Model
tags:
- generated_from_trainer
model-index:
- name: Super_Detection_Model2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Super_Detection_Model2

This model is a fine-tuned version of [ArrayDice/Super_Detection_Model](https://huggingface.co/ArrayDice/Super_Detection_Model) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1298
- Map: 0.1808
- Map 50: 0.3493
- Map 75: 0.1691
- Map Small: 0.1145
- Map Medium: 0.2679
- Map Large: 0.2383
- Mar 1: 0.125
- Mar 10: 0.2435
- Mar 100: 0.2784
- Mar Small: 0.2083
- Mar Medium: 0.3302
- Mar Large: 0.4376
- Map Car: 0.3117
- Mar 100 Car: 0.4185
- Map Hgv: 0.3441
- Mar 100 Hgv: 0.5338
- Map Motorcycle: 0.0675
- Mar 100 Motorcycle: 0.1613
- Map Other: 0.0
- Mar 100 Other: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Car | Mar 100 Car | Map Hgv | Mar 100 Hgv | Map Motorcycle | Mar 100 Motorcycle | Map Other | Mar 100 Other |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:-------:|:-----------:|:-------:|:-----------:|:--------------:|:------------------:|:---------:|:-------------:|
| 1.4212        | 1.0   | 1431  | 1.4437          | 0.0997 | 0.23   | 0.0726 | 0.0488    | 0.1966     | 0.1457    | 0.0912 | 0.1795 | 0.2091  | 0.14      | 0.2742     | 0.3388    | 0.173   | 0.3266      | 0.201   | 0.4018      | 0.0248         | 0.1078             | 0.0       | 0.0           |
| 1.5144        | 2.0   | 2862  | 1.3895          | 0.1133 | 0.2499 | 0.0908 | 0.0571    | 0.2007     | 0.1638    | 0.0939 | 0.1896 | 0.2221  | 0.1557    | 0.2747     | 0.3723    | 0.1975  | 0.3312      | 0.2273  | 0.4349      | 0.0286         | 0.1221             | 0.0       | 0.0           |
| 1.5085        | 3.0   | 4293  | 1.3969          | 0.1103 | 0.2537 | 0.0832 | 0.0554    | 0.2014     | 0.1627    | 0.0902 | 0.1783 | 0.2087  | 0.1443    | 0.2775     | 0.3275    | 0.2029  | 0.3265      | 0.2201  | 0.4265      | 0.0181         | 0.0819             | 0.0       | 0.0           |
| 1.4486        | 4.0   | 5724  | 1.4264          | 0.105  | 0.2365 | 0.0844 | 0.0537    | 0.1969     | 0.1555    | 0.0893 | 0.1759 | 0.2053  | 0.1335    | 0.2784     | 0.3643    | 0.1822  | 0.3185      | 0.217   | 0.4126      | 0.0208         | 0.0902             | 0.0       | 0.0           |
| 1.4493        | 5.0   | 7155  | 1.3755          | 0.1124 | 0.2532 | 0.0866 | 0.0571    | 0.2053     | 0.1307    | 0.0949 | 0.1909 | 0.2208  | 0.152     | 0.2766     | 0.3861    | 0.2078  | 0.3336      | 0.215   | 0.4231      | 0.0268         | 0.1265             | 0.0       | 0.0           |
| 1.4102        | 6.0   | 8586  | 1.3164          | 0.1195 | 0.2565 | 0.1016 | 0.0629    | 0.214      | 0.1613    | 0.0987 | 0.1957 | 0.2251  | 0.154     | 0.2865     | 0.4032    | 0.2229  | 0.3549      | 0.229   | 0.4187      | 0.0262         | 0.127              | 0.0       | 0.0           |
| 1.4181        | 7.0   | 10017 | 1.3534          | 0.1189 | 0.2556 | 0.0965 | 0.0657    | 0.2132     | 0.1558    | 0.0949 | 0.1971 | 0.2235  | 0.1575    | 0.2845     | 0.391     | 0.2206  | 0.3356      | 0.2295  | 0.4299      | 0.0255         | 0.1284             | 0.0       | 0.0           |
| 1.3845        | 8.0   | 11448 | 1.3302          | 0.1306 | 0.2716 | 0.1133 | 0.0726    | 0.223      | 0.1469    | 0.1014 | 0.1945 | 0.2239  | 0.15      | 0.2913     | 0.4012    | 0.2344  | 0.3495      | 0.2513  | 0.4369      | 0.0369         | 0.1093             | 0.0       | 0.0           |
| 1.3262        | 9.0   | 12879 | 1.2996          | 0.1393 | 0.288  | 0.1206 | 0.0805    | 0.2317     | 0.1548    | 0.1071 | 0.2058 | 0.238   | 0.165     | 0.3017     | 0.4235    | 0.2442  | 0.3655      | 0.2631  | 0.4736      | 0.0498         | 0.1127             | 0.0       | 0.0           |
| 1.3128        | 10.0  | 14310 | 1.2569          | 0.1435 | 0.2923 | 0.1259 | 0.0792    | 0.2384     | 0.2133    | 0.1099 | 0.2132 | 0.2433  | 0.1713    | 0.3085     | 0.4116    | 0.2575  | 0.3721      | 0.2792  | 0.4794      | 0.0372         | 0.1216             | 0.0       | 0.0           |
| 1.2872        | 11.0  | 15741 | 1.2379          | 0.1484 | 0.2977 | 0.1364 | 0.0835    | 0.2432     | 0.1956    | 0.1161 | 0.225  | 0.2578  | 0.1811    | 0.3194     | 0.4301    | 0.2601  | 0.382       | 0.284   | 0.5001      | 0.0494         | 0.149              | 0.0       | 0.0           |
| 1.3069        | 12.0  | 17172 | 1.2271          | 0.1469 | 0.2997 | 0.1295 | 0.0814    | 0.2445     | 0.215     | 0.1092 | 0.2168 | 0.2497  | 0.1769    | 0.3102     | 0.406     | 0.2629  | 0.3817      | 0.2836  | 0.4666      | 0.0412         | 0.1505             | 0.0       | 0.0           |
| 1.2587        | 13.0  | 18603 | 1.2020          | 0.1558 | 0.3127 | 0.1424 | 0.0907    | 0.2484     | 0.2203    | 0.1115 | 0.2232 | 0.2566  | 0.1833    | 0.3153     | 0.4394    | 0.2743  | 0.3866      | 0.2986  | 0.4951      | 0.0502         | 0.1446             | 0.0       | 0.0           |
| 1.2236        | 14.0  | 20034 | 1.1696          | 0.1671 | 0.3292 | 0.1585 | 0.1026    | 0.2555     | 0.222     | 0.1199 | 0.2325 | 0.2633  | 0.1887    | 0.3195     | 0.4303    | 0.2919  | 0.4009      | 0.3149  | 0.4924      | 0.0619         | 0.1598             | 0.0       | 0.0           |
| 1.1969        | 15.0  | 21465 | 1.1582          | 0.1733 | 0.3408 | 0.1625 | 0.1052    | 0.2628     | 0.2374    | 0.1228 | 0.2386 | 0.2712  | 0.1985    | 0.3235     | 0.4386    | 0.2948  | 0.4077      | 0.3294  | 0.5113      | 0.0689         | 0.1657             | 0.0       | 0.0           |
| 1.1768        | 16.0  | 22896 | 1.1394          | 0.1796 | 0.3415 | 0.168  | 0.112     | 0.266      | 0.2352    | 0.1263 | 0.2426 | 0.2771  | 0.2058    | 0.3287     | 0.4285    | 0.3014  | 0.4149      | 0.342   | 0.527       | 0.075          | 0.1667             | 0.0       | 0.0           |
| 1.1729        | 17.0  | 24327 | 1.1350          | 0.1821 | 0.3473 | 0.1733 | 0.1149    | 0.2693     | 0.2358    | 0.1282 | 0.2423 | 0.2773  | 0.2056    | 0.3316     | 0.4432    | 0.3064  | 0.4151      | 0.3507  | 0.5397      | 0.0715         | 0.1544             | 0.0       | 0.0           |
| 1.1745        | 18.0  | 25758 | 1.1336          | 0.1808 | 0.3482 | 0.1689 | 0.1134    | 0.2684     | 0.2368    | 0.1253 | 0.2426 | 0.2775  | 0.2065    | 0.3314     | 0.4412    | 0.3114  | 0.4172      | 0.3432  | 0.5336      | 0.0687         | 0.1593             | 0.0       | 0.0           |
| 1.1518        | 19.0  | 27189 | 1.1293          | 0.181  | 0.3487 | 0.1688 | 0.1144    | 0.2687     | 0.2398    | 0.1244 | 0.2427 | 0.2771  | 0.2066    | 0.3308     | 0.4376    | 0.3121  | 0.4184      | 0.3448  | 0.5333      | 0.0672         | 0.1569             | 0.0       | 0.0           |
| 1.1597        | 20.0  | 28620 | 1.1298          | 0.1808 | 0.3493 | 0.1691 | 0.1145    | 0.2679     | 0.2383    | 0.125  | 0.2435 | 0.2784  | 0.2083    | 0.3302     | 0.4376    | 0.3117  | 0.4185      | 0.3441  | 0.5338      | 0.0675         | 0.1613             | 0.0       | 0.0           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1