Vehicle_Detection_Model
This model is a fine-tuned version of facebook/detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7220
- Map: 0.0875
- Map 50: 0.1634
- Map 75: 0.084
- Map Small: 0.355
- Map Medium: 0.1423
- Map Large: 0.0499
- Mar 1: 0.1462
- Mar 10: 0.2602
- Mar 100: 0.2709
- Mar Small: 0.5
- Mar Medium: 0.4013
- Mar Large: 0.3
- Map Camping car: 0.0039
- Mar 100 Camping car: 0.35
- Map Car: 0.4971
- Mar 100 Car: 0.6256
- Map Other: 0.0
- Mar 100 Other: 0.0
- Map Pickup: 0.0239
- Mar 100 Pickup: 0.65
- Map Truck: 0.0
- Mar 100 Truck: 0.0
- Map Van: 0.0
- Mar 100 Van: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Camping car | Mar 100 Camping car | Map Car | Mar 100 Car | Map Other | Mar 100 Other | Map Pickup | Mar 100 Pickup | Map Truck | Mar 100 Truck | Map Van | Mar 100 Van |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 232 | 1.3186 | 0.0125 | 0.0292 | 0.0085 | 0.0059 | 0.0197 | 0.004 | 0.0182 | 0.0467 | 0.0903 | 0.0556 | 0.1396 | 0.1 | 0.0 | 0.0 | 0.0751 | 0.5416 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
No log | 2.0 | 464 | 1.0802 | 0.0375 | 0.0832 | 0.0283 | 0.263 | 0.0585 | 0.0102 | 0.0254 | 0.0734 | 0.0865 | 0.2667 | 0.1317 | 0.15 | 0.0 | 0.0 | 0.2249 | 0.5189 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4746 | 3.0 | 696 | 0.9804 | 0.0608 | 0.125 | 0.0483 | 0.2948 | 0.0938 | 0.075 | 0.0305 | 0.0821 | 0.0903 | 0.3556 | 0.1372 | 0.075 | 0.0 | 0.0 | 0.3646 | 0.5416 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4746 | 4.0 | 928 | 0.9139 | 0.0712 | 0.1426 | 0.0577 | 0.2232 | 0.1091 | 0.125 | 0.0315 | 0.085 | 0.0959 | 0.3333 | 0.1459 | 0.125 | 0.0 | 0.0 | 0.4274 | 0.5754 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.0134 | 5.0 | 1160 | 0.9581 | 0.0637 | 0.1367 | 0.0426 | 0.0804 | 0.0993 | 0.075 | 0.0289 | 0.0771 | 0.0846 | 0.2556 | 0.1292 | 0.075 | 0.0 | 0.0 | 0.3823 | 0.5078 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.0134 | 6.0 | 1392 | 0.8830 | 0.0743 | 0.1476 | 0.0645 | 0.2171 | 0.1139 | 0.075 | 0.0345 | 0.0862 | 0.0967 | 0.3222 | 0.1474 | 0.075 | 0.0 | 0.0 | 0.4456 | 0.5801 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.9133 | 7.0 | 1624 | 0.8645 | 0.0716 | 0.147 | 0.0571 | 0.2156 | 0.1099 | 0.0752 | 0.0329 | 0.0853 | 0.0966 | 0.3111 | 0.147 | 0.175 | 0.0 | 0.0 | 0.4296 | 0.5797 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.9133 | 8.0 | 1856 | 0.8776 | 0.0676 | 0.1478 | 0.0445 | 0.2225 | 0.1032 | 0.1254 | 0.0317 | 0.0811 | 0.0934 | 0.3333 | 0.1417 | 0.2 | 0.0 | 0.0 | 0.4056 | 0.5601 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8617 | 9.0 | 2088 | 0.8556 | 0.0754 | 0.1506 | 0.0638 | 0.252 | 0.1153 | 0.1254 | 0.0323 | 0.0881 | 0.0999 | 0.3667 | 0.1517 | 0.2 | 0.0 | 0.0 | 0.4525 | 0.5996 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8617 | 10.0 | 2320 | 0.7552 | 0.0821 | 0.1528 | 0.0803 | 0.361 | 0.1248 | 0.1257 | 0.0347 | 0.1119 | 0.1312 | 0.5222 | 0.1747 | 0.2625 | 0.0 | 0.0 | 0.4921 | 0.6206 | 0.0 | 0.0 | 0.0004 | 0.1667 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8182 | 11.0 | 2552 | 0.8211 | 0.0741 | 0.1525 | 0.0627 | 0.3014 | 0.114 | 0.0503 | 0.0381 | 0.1098 | 0.1544 | 0.4222 | 0.2641 | 0.125 | 0.0001 | 0.1 | 0.4422 | 0.5762 | 0.0 | 0.0 | 0.002 | 0.25 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8182 | 12.0 | 2784 | 0.8140 | 0.0734 | 0.1486 | 0.056 | 0.214 | 0.1129 | 0.0506 | 0.0451 | 0.1066 | 0.1184 | 0.3778 | 0.1941 | 0.125 | 0.0 | 0.0 | 0.4382 | 0.594 | 0.0 | 0.0 | 0.0024 | 0.1167 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8079 | 13.0 | 3016 | 0.7473 | 0.0848 | 0.1559 | 0.0789 | 0.2794 | 0.1307 | 0.0779 | 0.078 | 0.16 | 0.1727 | 0.5 | 0.2668 | 0.1625 | 0.0 | 0.0 | 0.4983 | 0.6363 | 0.0 | 0.0 | 0.0103 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8079 | 14.0 | 3248 | 0.8514 | 0.0706 | 0.1541 | 0.0485 | 0.3034 | 0.1071 | 0.1046 | 0.079 | 0.1726 | 0.1862 | 0.4222 | 0.2556 | 0.2875 | 0.0 | 0.0 | 0.4149 | 0.5669 | 0.0 | 0.0 | 0.0089 | 0.55 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8079 | 15.0 | 3480 | 0.7615 | 0.0814 | 0.1579 | 0.0709 | 0.3673 | 0.1229 | 0.0691 | 0.0929 | 0.161 | 0.1719 | 0.4444 | 0.2177 | 0.3125 | 0.0 | 0.0 | 0.4774 | 0.6146 | 0.0 | 0.0 | 0.0109 | 0.4167 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7672 | 16.0 | 3712 | 0.7819 | 0.0786 | 0.1555 | 0.0732 | 0.2782 | 0.1182 | 0.1589 | 0.103 | 0.1757 | 0.1878 | 0.3556 | 0.2629 | 0.325 | 0.0 | 0.0 | 0.4557 | 0.5936 | 0.0 | 0.0 | 0.0159 | 0.5333 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7672 | 17.0 | 3944 | 0.7723 | 0.0807 | 0.1551 | 0.0757 | 0.3302 | 0.1227 | 0.0687 | 0.0812 | 0.1762 | 0.1939 | 0.4 | 0.274 | 0.3 | 0.0 | 0.0 | 0.4724 | 0.6135 | 0.0 | 0.0 | 0.0121 | 0.55 | 0.0 | 0.0 | 0.0 | 0.0 |
0.744 | 18.0 | 4176 | 0.7838 | 0.0784 | 0.1535 | 0.0709 | 0.3594 | 0.1201 | 0.0564 | 0.0865 | 0.1865 | 0.2497 | 0.4 | 0.3637 | 0.325 | 0.0009 | 0.3 | 0.4503 | 0.5982 | 0.0 | 0.0 | 0.0191 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
0.744 | 19.0 | 4408 | 0.7714 | 0.0763 | 0.1552 | 0.0625 | 0.2732 | 0.116 | 0.0675 | 0.0605 | 0.1696 | 0.1824 | 0.4111 | 0.2502 | 0.3 | 0.0 | 0.0 | 0.4461 | 0.5943 | 0.0 | 0.0 | 0.0115 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7219 | 20.0 | 4640 | 0.7403 | 0.0808 | 0.1543 | 0.0686 | 0.2968 | 0.1251 | 0.0665 | 0.0984 | 0.1889 | 0.1997 | 0.5111 | 0.2859 | 0.3 | 0.0 | 0.0 | 0.4738 | 0.6146 | 0.0 | 0.0 | 0.0109 | 0.5833 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7219 | 21.0 | 4872 | 0.7421 | 0.0839 | 0.1599 | 0.0803 | 0.2862 | 0.2166 | 0.0451 | 0.1396 | 0.2437 | 0.257 | 0.5 | 0.3782 | 0.275 | 0.0123 | 0.4 | 0.4792 | 0.6089 | 0.0 | 0.0 | 0.0118 | 0.5333 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6955 | 22.0 | 5104 | 0.7459 | 0.0844 | 0.1619 | 0.0753 | 0.3116 | 0.1475 | 0.0462 | 0.1395 | 0.2253 | 0.2342 | 0.4333 | 0.3404 | 0.2875 | 0.0068 | 0.25 | 0.4815 | 0.6053 | 0.0 | 0.0 | 0.018 | 0.55 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6955 | 23.0 | 5336 | 0.7439 | 0.0844 | 0.1594 | 0.0782 | 0.3246 | 0.1335 | 0.0682 | 0.1559 | 0.2468 | 0.2567 | 0.4667 | 0.378 | 0.3 | 0.0031 | 0.3 | 0.4854 | 0.6071 | 0.0 | 0.0 | 0.018 | 0.6333 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6836 | 24.0 | 5568 | 0.7263 | 0.0879 | 0.1619 | 0.0854 | 0.3509 | 0.1397 | 0.0597 | 0.1718 | 0.2499 | 0.2589 | 0.4333 | 0.3818 | 0.275 | 0.0027 | 0.3 | 0.4998 | 0.6203 | 0.0 | 0.0 | 0.025 | 0.6333 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6836 | 25.0 | 5800 | 0.7146 | 0.0881 | 0.1632 | 0.087 | 0.3606 | 0.1412 | 0.0714 | 0.1518 | 0.2466 | 0.2572 | 0.4667 | 0.3768 | 0.3 | 0.0032 | 0.3 | 0.4988 | 0.6263 | 0.0 | 0.0 | 0.0267 | 0.6167 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6671 | 26.0 | 6032 | 0.7180 | 0.0915 | 0.1678 | 0.0918 | 0.3652 | 0.2262 | 0.0483 | 0.163 | 0.2506 | 0.2672 | 0.5 | 0.3979 | 0.2875 | 0.0186 | 0.35 | 0.5069 | 0.6367 | 0.0 | 0.0 | 0.0235 | 0.6167 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6671 | 27.0 | 6264 | 0.7219 | 0.0907 | 0.1678 | 0.0888 | 0.3596 | 0.2122 | 0.0492 | 0.1375 | 0.26 | 0.2709 | 0.5 | 0.4012 | 0.3 | 0.0184 | 0.35 | 0.5014 | 0.6253 | 0.0 | 0.0 | 0.0243 | 0.65 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6671 | 28.0 | 6496 | 0.7177 | 0.0882 | 0.1642 | 0.0866 | 0.3625 | 0.1439 | 0.0505 | 0.1463 | 0.2603 | 0.2715 | 0.5111 | 0.4021 | 0.3 | 0.0038 | 0.35 | 0.4996 | 0.6288 | 0.0 | 0.0 | 0.0256 | 0.65 | 0.0 | 0.0 | 0.0 | 0.0 |
0.656 | 29.0 | 6728 | 0.7257 | 0.0873 | 0.1634 | 0.084 | 0.355 | 0.1417 | 0.0497 | 0.1433 | 0.2572 | 0.2708 | 0.5 | 0.401 | 0.3 | 0.0039 | 0.35 | 0.4962 | 0.6246 | 0.0 | 0.0 | 0.0237 | 0.65 | 0.0 | 0.0 | 0.0 | 0.0 |
0.656 | 30.0 | 6960 | 0.7220 | 0.0875 | 0.1634 | 0.084 | 0.355 | 0.1423 | 0.0499 | 0.1462 | 0.2602 | 0.2709 | 0.5 | 0.4013 | 0.3 | 0.0039 | 0.35 | 0.4971 | 0.6256 | 0.0 | 0.0 | 0.0239 | 0.65 | 0.0 | 0.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 116
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ArrayDice/Vehicle_Detection_Model
Base model
facebook/detr-resnet-50