fine_tuned_segmentation-3.0_1e-3_128_pth

This model is a fine-tuned version of pyannote/segmentation-3.0 on the ArtFair/diarizers_dataset_70-15-15 default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3620
  • Der: 0.2625
  • False Alarm: 0.1458
  • Missed Detection: 0.0926
  • Confusion: 0.0241

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 128
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.426 1.0 233 0.3954 0.2915 0.1834 0.0807 0.0274
0.3974 2.0 466 0.3667 0.2668 0.1391 0.1032 0.0246
0.3772 3.0 699 0.3675 0.2672 0.1552 0.0874 0.0246
0.3618 4.0 932 0.3629 0.2641 0.1498 0.0899 0.0243
0.3622 5.0 1165 0.3620 0.2625 0.1458 0.0926 0.0241

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
58
Inference API
Unable to determine this model's library. Check the docs .

Model tree for ArtFair/fine_tuned_segmentation-3.0_1e-3_128_pth

Finetuned
(40)
this model

Dataset used to train ArtFair/fine_tuned_segmentation-3.0_1e-3_128_pth