ppo-LunarLander-v2 / config.json
ArthurinRUC's picture
Upload PPO LunarLander-v2 trained agent
8e14962
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7858c0a790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7858c0a820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7858c0a8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7858c0a940>", "_build": "<function ActorCriticPolicy._build at 0x7f7858c0a9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7858c0aa60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7858c0aaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7858c0ab80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7858c0ac10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7858c0aca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7858c0ad30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7858c0b0f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671079351850506072, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPoKLD5toUI/cM9WvVCcqL5ENnQ95gQAPAAAAAAAAAAA5ld/PSmUc7oqno65+sxstHHsJrselaY4AACAPwAAgD8z9EC9j14DuhrTd7seVoU4NMs9u+UJyTkAAIA/AACAP2bUsbx7FpC6ZSHctvXIoLFsTQG6Vbf+NQAAgD8AAIA/TS6CPfYoX7r0fo66zU5/tSJ1oLteqKc5AACAPwAAgD+N7J+94VKfP4NEAr7yTZu+KFwMvjt/Lr0AAAAAAAAAAJpYFD2up4G6eiF1ufcJUrR103C7ahSPOAAAgD8AAIA/mjcCPCkkd7oeQyi4xI81ssoVfrs67kI3AACAPwAAgD+aIsG8XINqugCQnroRbn009elMuzeItjkAAIA/AACAP1tph77ngUc/7oZIPoR5ib7qQ2y94XghPgAAAAAAAAAAgGMvvZyROT9qAJI6lVugvkmhPjuv3IQ9AAAAAAAAAABQKHi+sw4AP1MVbT7tcYG+QwePO8iTFz4AAAAAAAAAACaNsz2PagO6QvrnOs0nb7Q3zSa78bIGugAAgD8AAAAAAGJkPXsqnbpyb5466/l7NT9fgrn7eLa5AACAPwAAgD/aaIy9SE+VulAxfDvuyGA4FkqnuWZuG7oAAIA/AACAP2Z2SzzhZJW6o8X4ureugLSgnde6QrfzMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3A4Ni9GbZUCUhpRSlIwBbJRN6AOMAXSUR0Ch6FcFpwjudX2UKGgGaAloD0MI1Em2uhwsZkCUhpRSlGgVTegDaBZHQKHo+5ZKWcB1fZQoaAZoCWgPQwjk3CbcK8VnQJSGlFKUaBVN6ANoFkdAoexf8baRIXV9lChoBmgJaA9DCPs/h/nyfElAlIaUUpRoFU0FAWgWR0Ch7bxoRIz4dX2UKGgGaAloD0MIOJ86VilRYkCUhpRSlGgVTegDaBZHQKHw1nmq5sl1fZQoaAZoCWgPQwh3LLZJRVBkQJSGlFKUaBVN6ANoFkdAogqVj5Kvm3V9lChoBmgJaA9DCFotsMdEamZAlIaUUpRoFU3oA2gWR0CiCp4Kx9ofdX2UKGgGaAloD0MIopkn15TtYUCUhpRSlGgVTegDaBZHQKINd2zOX3R1fZQoaAZoCWgPQwjt1FxusPBgQJSGlFKUaBVN6ANoFkdAog39e4TbnHV9lChoBmgJaA9DCKt3uB0aFWFAlIaUUpRoFU3oA2gWR0CiDuBKcurZdX2UKGgGaAloD0MINrHAV/TVZECUhpRSlGgVTegDaBZHQKIPkZUkv9N1fZQoaAZoCWgPQwhDOGbZE/ZiQJSGlFKUaBVN6ANoFkdAog/46dUbUHV9lChoBmgJaA9DCABXsmOjHWZAlIaUUpRoFU3oA2gWR0CiEKksjFAFdX2UKGgGaAloD0MImpfD7jssZUCUhpRSlGgVTegDaBZHQKISmMo+fRN1fZQoaAZoCWgPQwgw16IFaB1kQJSGlFKUaBVN6ANoFkdAohOai7Ciy3V9lChoBmgJaA9DCFwAGqVL/mJAlIaUUpRoFU3oA2gWR0CiFOJzDGcXdX2UKGgGaAloD0MIMXpuoStLZUCUhpRSlGgVTegDaBZHQKIViVdHDrJ1fZQoaAZoCWgPQwhkrgyqjcZiQJSGlFKUaBVN6ANoFkdAohZEYwZflnV9lChoBmgJaA9DCNrjhXR4zVxAlIaUUpRoFU3oA2gWR0CiGgHVwxWUdX2UKGgGaAloD0MIIbByaJE/Y0CUhpRSlGgVTegDaBZHQKIbh2IwdsB1fZQoaAZoCWgPQwik/+VatMBkQJSGlFKUaBVN6ANoFkdAoh66piqhlHV9lChoBmgJaA9DCDtREhJpxG5AlIaUUpRoFU2NAmgWR0CiNWAzxgAqdX2UKGgGaAloD0MInigJiTSpYUCUhpRSlGgVTegDaBZHQKI150nPVut1fZQoaAZoCWgPQwiDaRg+IohhQJSGlFKUaBVN6ANoFkdAojXvio86m3V9lChoBmgJaA9DCInrGFdcEGdAlIaUUpRoFU3oA2gWR0CiOHo4dZJTdX2UKGgGaAloD0MIucZnsv/jZ0CUhpRSlGgVTegDaBZHQKI49xnWatt1fZQoaAZoCWgPQwgVArnEkR9jQJSGlFKUaBVN6ANoFkdAojm+9YfW+XV9lChoBmgJaA9DCI1feCXJzWVAlIaUUpRoFU3oA2gWR0CiOlNp/PPcdX2UKGgGaAloD0MIRUYHJGEeZUCUhpRSlGgVTegDaBZHQKI6rEUCaJB1fZQoaAZoCWgPQwjghEIEnGJjQJSGlFKUaBVN6ANoFkdAojtLZOBUaXV9lChoBmgJaA9DCL72zJKA42VAlIaUUpRoFU3oA2gWR0CiPQ7U5MlDdX2UKGgGaAloD0MIRDF5A8z1X0CUhpRSlGgVTegDaBZHQKI99bsWweN1fZQoaAZoCWgPQwgROBJoMP1hQJSGlFKUaBVN6ANoFkdAoj+ttuUD+3V9lChoBmgJaA9DCItPATCeG2JAlIaUUpRoFU3oA2gWR0CiQHUWEbo9dX2UKGgGaAloD0MIqBq9GiAWYkCUhpRSlGgVTegDaBZHQKJEMhLXcxl1fZQoaAZoCWgPQwjDgCVXMeFmQJSGlFKUaBVN6ANoFkdAokWXSc9W63V9lChoBmgJaA9DCGlwW1v4+WBAlIaUUpRoFU3oA2gWR0CiSLbfHggpdX2UKGgGaAloD0MIyT7IsmD4cECUhpRSlGgVTdUCaBZHQKJREBT4tYl1fZQoaAZoCWgPQwg1mlyMgcxrQJSGlFKUaBVN+QJoFkdAolM8euFHrnV9lChoBmgJaA9DCAiqRq8GoG9AlIaUUpRoFU22AWgWR0CiU0W+wkgPdX2UKGgGaAloD0MIBtodUgwJX0CUhpRSlGgVTegDaBZHQKJeF8l5WzZ1fZQoaAZoCWgPQwiAYI4eP9piQJSGlFKUaBVN6ANoFkdAol6GAy2x6nV9lChoBmgJaA9DCJXTnpJztV5AlIaUUpRoFU3oA2gWR0CiXo1sDW9UdX2UKGgGaAloD0MImL9C5spkZUCUhpRSlGgVTegDaBZHQKJgluKoAGV1fZQoaAZoCWgPQwjwGB772UdlQJSGlFKUaBVN6ANoFkdAomD5t3wCsHV9lChoBmgJaA9DCGNCzCVVh2VAlIaUUpRoFU3oA2gWR0CiYZSE12q2dX2UKGgGaAloD0MIqtOBrKdkYkCUhpRSlGgVTegDaBZHQKJiG1YQrc11fZQoaAZoCWgPQwgnFviKbtZlQJSGlFKUaBVN6ANoFkdAomTQlhPTHHV9lChoBmgJaA9DCO87hsd+JHBAlIaUUpRoFU2YAWgWR0CiZcX1anrIdX2UKGgGaAloD0MIlIWvr/WiYUCUhpRSlGgVTegDaBZHQKJl1UrCm/F1fZQoaAZoCWgPQwjMe5xpQvBkQJSGlFKUaBVN6ANoFkdAomeRJGvwE3V9lChoBmgJaA9DCMo0mlyMgGBAlIaUUpRoFU3oA2gWR0CiaE1f/m1ZdX2UKGgGaAloD0MI74y2KomSQ0CUhpRSlGgVS+5oFkdAomtlp9JBgXV9lChoBmgJaA9DCHcstknFl2FAlIaUUpRoFU3oA2gWR0CibUfOlfqpdX2UKGgGaAloD0MIAmcpWU6jZ0CUhpRSlGgVTegDaBZHQKJwRM6BAfN1fZQoaAZoCWgPQwgMrrmj/ytvQJSGlFKUaBVNhgFoFkdAonF3J3gUDnV9lChoBmgJaA9DCCdKQiJt2zlAlIaUUpRoFUv4aBZHQKJ5tojfNzN1fZQoaAZoCWgPQwg8Mlab/whkQJSGlFKUaBVN6ANoFkdAonpQ8SwnpnV9lChoBmgJaA9DCCm0rPvHlGFAlIaUUpRoFU3oA2gWR0CielrcCYCydX2UKGgGaAloD0MImdU73A4rZUCUhpRSlGgVTegDaBZHQKJ7zOJLuhN1fZQoaAZoCWgPQwgzT64pED5jQJSGlFKUaBVN6ANoFkdAooWqbrkbP3V9lChoBmgJaA9DCB5ssdtnUmZAlIaUUpRoFU3oA2gWR0CihbHJcPe6dX2UKGgGaAloD0MI4Sh5dY4nXUCUhpRSlGgVTegDaBZHQKKH5O/L1VZ1fZQoaAZoCWgPQwjDLLRzGhNjQJSGlFKUaBVN6ANoFkdAoohNe6ZpjHV9lChoBmgJaA9DCPYjRWTYPWFAlIaUUpRoFU3oA2gWR0CiiP/tpmEodX2UKGgGaAloD0MI3Lqbp7rCY0CUhpRSlGgVTegDaBZHQKKJlCJGe+V1fZQoaAZoCWgPQwgijJ/GPSlgQJSGlFKUaBVN6ANoFkdAoo3Bgy/KyXV9lChoBmgJaA9DCNs0tteChmxAlIaUUpRoFU0DA2gWR0CijrGxD9fkdX2UKGgGaAloD0MIO+ElOPWBXUCUhpRSlGgVTegDaBZHQKKP9X1anrJ1fZQoaAZoCWgPQwjC2a1lsrBjQJSGlFKUaBVN6ANoFkdAopDW1fE4vXV9lChoBmgJaA9DCGrC9pMx719AlIaUUpRoFU3oA2gWR0CilJq508vFdX2UKGgGaAloD0MI8lt0stTjZECUhpRSlGgVTegDaBZHQKKaBgaWHDd1fZQoaAZoCWgPQwhyNbIr7UNyQJSGlFKUaBVNXQFoFkdAopr0HbAUL3V9lChoBmgJaA9DCNy4xfzcv21AlIaUUpRoFU13A2gWR0CiooABLf1pdX2UKGgGaAloD0MIlBPtKqSfXkCUhpRSlGgVTegDaBZHQKKkZgRbr1N1fZQoaAZoCWgPQwgSpFLs6ONoQJSGlFKUaBVN6ANoFkdAoqT2Bg/kenV9lChoBmgJaA9DCE5HADcLamVAlIaUUpRoFU3oA2gWR0CipQB3A2ycdX2UKGgGaAloD0MIAFeyY6NSY0CUhpRSlGgVTegDaBZHQKKmyf5DZ151fZQoaAZoCWgPQwg6AyMv6/diQJSGlFKUaBVN6ANoFkdAoqbRQ1rIo3V9lChoBmgJaA9DCCmUha+v+V5AlIaUUpRoFU3oA2gWR0CisoD0+TvBdX2UKGgGaAloD0MIgXueP+0jZUCUhpRSlGgVTegDaBZHQKKy7wVj7Q91fZQoaAZoCWgPQwheTZ6yGrNkQJSGlFKUaBVN6ANoFkdAorOscS5AhXV9lChoBmgJaA9DCKDBps6jeGVAlIaUUpRoFU3oA2gWR0CitExIre67dX2UKGgGaAloD0MIEmvxKQCkcECUhpRSlGgVTZoDaBZHQKK2LlfZ26l1fZQoaAZoCWgPQwgc6ndha0pOQJSGlFKUaBVNFQFoFkdAorgqbKA8S3V9lChoBmgJaA9DCIy7QbRWCmxAlIaUUpRoFU14AWgWR0CiuOvBBRhudX2UKGgGaAloD0MIjURoBBtlYECUhpRSlGgVTegDaBZHQKK6uLWqcVh1fZQoaAZoCWgPQwitvU9VIYBiQJSGlFKUaBVN6ANoFkdAorubGo73f3V9lChoBmgJaA9DCLB1qRH6iWNAlIaUUpRoFU3oA2gWR0Civ1pHiFTOdX2UKGgGaAloD0MIilqaW2F/ckCUhpRSlGgVTeUBaBZHQKLEeAbQ1Jl1fZQoaAZoCWgPQwgzVMVU+hFgQJSGlFKUaBVN6ANoFkdAosUIkRjBmHV9lChoBmgJaA9DCN3qOel9pmNAlIaUUpRoFU3oA2gWR0Cixf1Fpfx+dX2UKGgGaAloD0MIMuNtpZeVcUCUhpRSlGgVTVgCaBZHQKLGz/yXlbN1fZQoaAZoCWgPQwhbejTVExpxQJSGlFKUaBVNtAFoFkdAosd9AmiQDHV9lChoBmgJaA9DCGiSWFJumG9AlIaUUpRoFU2kAWgWR0Cix7l5WzWxdX2UKGgGaAloD0MI0ZLH0/IVY0CUhpRSlGgVTegDaBZHQKLMWlVLi/B1fZQoaAZoCWgPQwg83XnieZ9xQJSGlFKUaBVNxgJoFkdAos3TJIUah3V9lChoBmgJaA9DCCMWMewwDmNAlIaUUpRoFU3oA2gWR0Ciznba7EpBdX2UKGgGaAloD0MIQWSRJt7WX0CUhpRSlGgVTegDaBZHQKLOgCiAUcp1fZQoaAZoCWgPQwgnhA66hKthQJSGlFKUaBVN6ANoFkdAotA6C17Y03VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}