|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: headlight_12_12_2024_google_vit-base-patch16-224-in21k |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9014772078868953 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# headlight_12_12_2024_google_vit-base-patch16-224-in21k |
|
|
|
This model is a fine-tuned version of [ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k](https://huggingface.co/ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2587 |
|
- Accuracy: 0.9015 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 512 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| No log | 0.9995 | 492 | 0.2682 | 0.8973 | |
|
| 0.1998 | 1.9990 | 984 | 0.2701 | 0.8982 | |
|
| 0.1988 | 2.9985 | 1476 | 0.2708 | 0.8974 | |
|
| 0.1976 | 4.0 | 1969 | 0.2609 | 0.9013 | |
|
| 0.2131 | 4.9995 | 2461 | 0.2584 | 0.9011 | |
|
| 0.2169 | 5.9970 | 2952 | 0.2587 | 0.9015 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|