|
--- |
|
tags: |
|
- text-generation-inference |
|
- text-generation |
|
- peft |
|
library_name: transformers |
|
widget: |
|
- messages: |
|
- role: user |
|
content: Translate the text 'Bonjour, comment allez-vous?' from French to English. |
|
datasets: |
|
- tatsu-lab/alpaca |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-4.0 |
|
inference: false |
|
--- |
|
|
|
## LAI-Paca-7b |
|
|
|
Instruction Fine-Tune of Mistral with the Alpaca dataset for instructions. It should primarily be used for API calls for tools, such as making a call to obtain a title for a song generated by a music generation AI based on a provided prompt or other applications. |
|
|
|
## Notice |
|
|
|
Please remember that the uploaded model is a adapter model. |
|
<br> |
|
It should be used in the Alpaca format. |
|
|
|
## Usage |
|
|
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_path = "Artples/LAI-Paca-7b" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
device_map="auto", |
|
torch_dtype='auto' |
|
).eval() |
|
|
|
# Prompt content: "hi" |
|
messages = [ |
|
{"role": "user", "content": "hi"} |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') |
|
output_ids = model.generate(input_ids.to('cuda')) |
|
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
# Model response: "Hello! How can I assist you today?" |
|
print(response) |
|
``` |