DeepTime / DeepTime.py
Asheng98's picture
Upload DeepTime.py
40f71f0 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from layers.Transformer_EncDec import Decoder, DecoderLayer, Encoder, EncoderLayer
from layers.SelfAttention_Family import FullAttention, AttentionLayer
from layers.Embed import PatchEmbedding
from collections import Counter
from layers.SharedWavMoE import WavMoE
from layers.RevIN import RevIN
import torch.fft
from layers.Embed import DataEmbedding
class FlattenHead(nn.Module):
def __init__(self, n_vars, nf, target_window, head_dropout=0):
super().__init__()
self.n_vars = n_vars
# self.flatten = nn.Flatten(start_dim=-2)
self.linear = nn.Linear(nf, target_window)
self.dropout = nn.Dropout(head_dropout)
def forward(self, x): # x: [bs x nvars x d_model x patch_num]
# x = self.flatten(x)
# print(self.linear,x.shape)
x = self.linear(x)
x = self.dropout(x)
return x
class Model(nn.Module):
"""
"""
def __init__(self, configs):
super(Model, self).__init__()
self.task_name = configs.task_name
self.seq_len = configs.seq_len
self.patch_len = configs.input_token_len
self.stride = self.patch_len
self.pred_len = configs.test_pred_len
self.test_seq_len = configs.test_seq_len
# embedding configs
self.output_attention = configs.output_attention
self.padding = configs.padding
# MoE设置
self.hidden_size = configs.hidden_size
self.intermediate_size = configs.intermediate_size
self.top_k = configs.top_k
self.shared_experts = configs.shared_experts
self.wavelet = configs.wavelet
self.level = configs.shared_experts
self.proj_wight = configs.proj_wight
# Embedding
self.patch_embedding = PatchEmbedding(
configs.d_model, self.patch_len, self.stride, self.padding, configs.dropout)
self.data_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
configs.dropout)
self.revin_layer = RevIN(configs.enc_in)
self.encoder_patch = Encoder(
[
EncoderLayer(
AttentionLayer(
FullAttention(False, configs.factor,
attention_dropout=configs.dropout,
output_attention=configs.output_attention),
configs.d_model, configs.n_heads),
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
activation=configs.activation
) for l in range(configs.e_layers)
],
norm_layer=torch.nn.LayerNorm(configs.d_model)
)
self.encoder_time = Encoder(
[
EncoderLayer(
AttentionLayer(
FullAttention(False, configs.factor,
attention_dropout=configs.dropout,
output_attention=configs.output_attention),
configs.d_model, configs.n_heads),
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
activation=configs.activation
) for l in range(configs.e_layers)
],
norm_layer=torch.nn.LayerNorm(configs.d_model)
)
self.head_nf = configs.d_model * \
int((configs.seq_len - self.patch_len) / self.stride + 1)
self.projection = nn.Linear(self.head_nf, int(configs.seq_len*self.proj_wight), bias=True)
self.data_projection = nn.Linear(configs.d_model, configs.enc_in, bias=True)
self.wavmoe = WavMoE(configs)
self.head = FlattenHead(configs.enc_in, nf= int(configs.seq_len*self.proj_wight), target_window= self.seq_len,
head_dropout=configs.dropout)
self.gelu = nn.GELU()
def main(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# 归一化并且嵌入
x_revin = self.revin_layer(x_enc, 'norm').permute(0, 2, 1)
# print("x_revin.shape:",x_revin.shape)
B, D, S = x_revin.shape
# 进入注意力机制
x_inver=self.data_embedding(x_revin.permute(0, 2, 1), x_mark_enc)
nav_out, attn_w = self.encoder_time(x_inver, attn_mask=None)
#print("nav_out.shape:", nav_out.shape,self.data_projection)
nav_out = self.data_projection(nav_out)
#print("nav_out.shape:", nav_out.shape)
#patch embedding进入多头FullAttention
# u: [bs * nvars x patch_num x d_model]
x_pe, n_vars = self.patch_embedding(x_revin+nav_out.permute(0, 2, 1))
#print("x_pe.shape:",x_pe.shape, n_vars)
enc_out, attn = self.encoder_patch(x_pe)
dec_out = enc_out.reshape(B, D, -1)
#print("dec_out.shape:",dec_out.shape, self.head_nf)
act_val = self.projection(dec_out)
#print("act_val:", act_val.shape)
# 专家系统
moe_out, router_logits = self.wavmoe(act_val + nav_out.permute(0, 2, 1))
#print("moe_out", moe_out.shape)
head_out = self.head(moe_out)
# 逆归一化输出
x_out = self.revin_layer(head_out.permute(0, 2, 1), 'denorm')
#print(x_out.shape)
return x_out
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
if self.task_name == 'long_term_forecast' or self.task_name == 'forecast':
dec_out = self.main(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.test_seq_len :, :] # [B, L, D]
if self.task_name == 'anomaly_detection':
dec_out = self.main(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out # [B, L, D]
return None