Askinkaty's picture
Update README.md
24dbfc4 verified
---
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'Room Buzz: Alstom, DRL,:Dealing Room Buzz: Alstom, DRL, Raymond, Titan'
- text: 'like Cummins, Voltas and Engineers India:Capital goods names like Cummins,
Voltas and Engineers India to fetch returns: Manish Sonthalia'
- text: DCM Shriram Consolidated rallies 17%:DCM Shriram Consolidated rallies 17%,
hits 52-week high on plans to reward shareholders
- text: 'Deepak Mohoni, trendwatchindia.com:Tinplate is certainly a hold: Deepak Mohoni,
trendwatchindia.com'
- text: Dollar flatlines ahead of:Dollar flatlines ahead of Janet Yellen, Mario Draghi
at Jackson Hole
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: false
base_model: sentence-transformers/all-mpnet-base-v2
---
# SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
1. Use a spaCy model to select possible aspect span candidates.
2. Use a SetFit model to filter these possible aspect span candidates.
3. Use this SetFit model to classify the filtered aspect span candidates.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_sm
- **SetFitABSA Aspect Model:** [/Askinkaty/setfit-finance-aspect](https://huggingface.co/Askinkaty/setfit-finance-aspect)
- **SetFitABSA Polarity Model:** [/Askinkaty/setfit-finance-polarity](https://huggingface.co/Askinkaty/setfit-finance-polarity)
- **Maximum Sequence Length:** 384 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Labels
| Label | Examples |
|:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neutral | <ul><li>'Ponzi schemes: Sebi seeks quarterly meetings:Ponzi schemes: Sebi seeks quarterly meetings of state panels'</li><li>'European shares steady, pegged:European shares steady, pegged back by Vodafone'</li><li>'Bajaj Auto Q2 net at:Bajaj Auto Q2 net at Rs 591 crore'</li></ul> |
| negative | <ul><li>'pegged back by Vodafone:European shares steady, pegged back by Vodafone'</li><li>'M&M Finance plunges 8.5%:M&M Finance plunges 8.5% as brokers cut target price post Q3 results'</li><li>"' rating on Tata Motors; prefer Hero:Have 'sell' rating on Tata Motors; prefer Hero MotoCorp among auto stocks: Harendra Kumar"</li></ul> |
| positive | <ul><li>"Buy' on Wipro with target of:Maintain 'Buy' on Wipro with target of Rs 528: Sharekhan"</li><li>"Motors; prefer Hero MotoCorp among auto stocks:Have 'sell' rating on Tata Motors; prefer Hero MotoCorp among auto stocks: Harendra Kumar"</li><li>'Servalakshmi Paper debuts at over:Servalakshmi Paper debuts at over 3 pc premium on BSE'</li></ul> |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"Askinkaty/setfit-finance-aspect",
"Askinkaty/setfit-finance-polarity",
)
# Run inference
preds = model("Banking stocks to see lot of traction: Mitesh Thacker.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
### Training Hyperparameters
- batch_size: 64
- num_epochs: 2
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: 1e-05
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Framework Versions
- Python: 3.11.11
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- spaCy: 3.7.5
- Transformers: 4.42.1
- PyTorch: 2.5.1+cu124
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->