metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: BEiT-DMAE-DA-REVAL-80-35e-05
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8913043478260869
BEiT-DMAE-DA-REVAL-80-35e-05
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4981
- Accuracy: 0.8913
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 80
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.528 | 0.96 | 11 | 1.2944 | 0.4565 |
1.3955 | 2.0 | 23 | 1.3459 | 0.5 |
1.3036 | 2.96 | 34 | 1.2487 | 0.3696 |
1.1708 | 4.0 | 46 | 1.0742 | 0.5217 |
1.0545 | 4.96 | 57 | 0.9917 | 0.5435 |
0.9352 | 6.0 | 69 | 0.9326 | 0.5435 |
0.7648 | 6.96 | 80 | 0.9982 | 0.4348 |
0.7161 | 8.0 | 92 | 0.8967 | 0.5870 |
0.6157 | 8.96 | 103 | 0.9164 | 0.6087 |
0.6128 | 10.0 | 115 | 0.9261 | 0.6522 |
0.4791 | 10.96 | 126 | 0.7729 | 0.7391 |
0.4494 | 12.0 | 138 | 0.6894 | 0.8043 |
0.4213 | 12.96 | 149 | 0.7138 | 0.8043 |
0.3341 | 14.0 | 161 | 0.9143 | 0.7174 |
0.3114 | 14.96 | 172 | 0.6721 | 0.7609 |
0.322 | 16.0 | 184 | 0.7821 | 0.7609 |
0.2975 | 16.96 | 195 | 0.7998 | 0.7826 |
0.2694 | 18.0 | 207 | 0.6825 | 0.8043 |
0.2104 | 18.96 | 218 | 0.6983 | 0.8043 |
0.2309 | 20.0 | 230 | 0.7812 | 0.7174 |
0.1867 | 20.96 | 241 | 0.7511 | 0.7609 |
0.17 | 22.0 | 253 | 0.9706 | 0.7391 |
0.1915 | 22.96 | 264 | 0.7702 | 0.8043 |
0.2309 | 24.0 | 276 | 0.7152 | 0.8043 |
0.1813 | 24.96 | 287 | 0.7917 | 0.7826 |
0.1399 | 26.0 | 299 | 0.7918 | 0.7391 |
0.1481 | 26.96 | 310 | 0.7052 | 0.8261 |
0.2046 | 28.0 | 322 | 0.5693 | 0.8478 |
0.1912 | 28.96 | 333 | 0.6074 | 0.8261 |
0.1467 | 30.0 | 345 | 0.9355 | 0.7609 |
0.1263 | 30.96 | 356 | 0.6719 | 0.8261 |
0.1357 | 32.0 | 368 | 0.7006 | 0.7826 |
0.1117 | 32.96 | 379 | 0.7690 | 0.7609 |
0.1294 | 34.0 | 391 | 0.9282 | 0.7609 |
0.139 | 34.96 | 402 | 0.7608 | 0.7609 |
0.131 | 36.0 | 414 | 0.8221 | 0.8043 |
0.1237 | 36.96 | 425 | 0.9204 | 0.7391 |
0.1148 | 38.0 | 437 | 0.5724 | 0.8261 |
0.1131 | 38.96 | 448 | 0.9197 | 0.7609 |
0.1171 | 40.0 | 460 | 0.8922 | 0.7174 |
0.0833 | 40.96 | 471 | 0.6172 | 0.8043 |
0.1026 | 42.0 | 483 | 0.6637 | 0.7609 |
0.09 | 42.96 | 494 | 0.8515 | 0.7826 |
0.0894 | 44.0 | 506 | 0.5513 | 0.8696 |
0.0842 | 44.96 | 517 | 0.8008 | 0.8261 |
0.0824 | 46.0 | 529 | 0.6873 | 0.8696 |
0.1004 | 46.96 | 540 | 1.0546 | 0.7826 |
0.0915 | 48.0 | 552 | 0.8237 | 0.7609 |
0.0642 | 48.96 | 563 | 0.4981 | 0.8913 |
0.0872 | 50.0 | 575 | 0.7128 | 0.8696 |
0.0755 | 50.96 | 586 | 0.7991 | 0.8043 |
0.0773 | 52.0 | 598 | 0.8565 | 0.7826 |
0.0853 | 52.96 | 609 | 0.7463 | 0.8478 |
0.0717 | 54.0 | 621 | 0.7527 | 0.8043 |
0.0919 | 54.96 | 632 | 0.6984 | 0.8478 |
0.0913 | 56.0 | 644 | 0.7035 | 0.8043 |
0.0672 | 56.96 | 655 | 0.6481 | 0.8696 |
0.0691 | 58.0 | 667 | 0.7666 | 0.8696 |
0.0733 | 58.96 | 678 | 0.7665 | 0.8478 |
0.0982 | 60.0 | 690 | 0.8573 | 0.8478 |
0.0791 | 60.96 | 701 | 0.7859 | 0.8696 |
0.0559 | 62.0 | 713 | 0.7715 | 0.8261 |
0.0725 | 62.96 | 724 | 0.8548 | 0.8478 |
0.065 | 64.0 | 736 | 0.8533 | 0.8478 |
0.0844 | 64.96 | 747 | 0.8175 | 0.8478 |
0.0664 | 66.0 | 759 | 0.7743 | 0.8261 |
0.0696 | 66.96 | 770 | 0.8106 | 0.8696 |
0.0567 | 68.0 | 782 | 0.7904 | 0.8478 |
0.083 | 68.96 | 793 | 0.8550 | 0.8043 |
0.0385 | 70.0 | 805 | 0.8915 | 0.8261 |
0.0714 | 70.96 | 816 | 0.8631 | 0.8261 |
0.0444 | 72.0 | 828 | 0.8231 | 0.8478 |
0.0496 | 72.96 | 839 | 0.8199 | 0.8478 |
0.0887 | 74.0 | 851 | 0.8304 | 0.8478 |
0.0475 | 74.96 | 862 | 0.8529 | 0.8261 |
0.0639 | 76.0 | 874 | 0.8580 | 0.8261 |
0.0704 | 76.52 | 880 | 0.8589 | 0.8261 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0