Augusto777's picture
Model save
ee9a325 verified
|
raw
history blame
3.76 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-dmae-va-U5-42
    results: []

swiftformer-xs-dmae-va-U5-42

This model is a fine-tuned version of MBZUAI/swiftformer-xs on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0447
  • Accuracy: 0.55

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 42

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9 7 1.3144 0.4833
1.3947 1.94 15 1.3154 0.4
1.3947 2.97 23 1.2849 0.4167
1.3608 4.0 31 1.2512 0.4667
1.3048 4.9 38 1.2340 0.55
1.3048 5.94 46 1.2118 0.5833
1.2456 6.97 54 1.2077 0.55
1.186 8.0 62 1.1672 0.5333
1.186 8.9 69 1.1565 0.6167
1.1218 9.94 77 1.1532 0.5833
1.0731 10.97 85 1.1304 0.5833
1.0731 12.0 93 1.1664 0.5167
1.0135 12.9 100 1.1222 0.55
0.9783 13.94 108 1.1404 0.5333
0.9783 14.97 116 1.1022 0.5833
0.9195 16.0 124 1.0996 0.55
0.9195 16.9 131 1.0715 0.6
0.9023 17.94 139 1.0779 0.5833
0.8575 18.97 147 1.0797 0.5667
0.8575 20.0 155 1.0508 0.5833
0.8519 20.9 162 1.0500 0.5833
0.8098 21.94 170 1.0212 0.5667
0.8098 22.97 178 1.0041 0.5833
0.8018 24.0 186 1.0197 0.5667
0.7709 24.9 193 1.0283 0.5333
0.7709 25.94 201 1.0303 0.55
0.7642 26.97 209 1.0100 0.5833
0.7322 28.0 217 1.0475 0.5333
0.7322 28.9 224 1.0667 0.55
0.7245 29.94 232 1.0743 0.55
0.7254 30.97 240 1.0416 0.5333
0.7254 32.0 248 1.0664 0.5667
0.7201 32.9 255 1.0393 0.55
0.7201 33.94 263 1.0284 0.55
0.6968 34.97 271 1.0420 0.55
0.7073 36.0 279 1.0396 0.5333
0.7073 36.9 286 1.0640 0.55
0.6891 37.94 294 1.0447 0.55

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2