Augusto777's picture
End of training
63320b8 verified
|
raw
history blame
6.46 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-ve-U13-b-80
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8695652173913043

swiftformer-xs-ve-U13-b-80

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6163
  • Accuracy: 0.8696

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 1.4461 0.1087
1.3993 2.0 13 1.4435 0.1087
1.3993 2.92 19 1.4389 0.1087
1.3849 4.0 26 1.4284 0.1087
1.3287 4.92 32 1.4223 0.1304
1.3287 6.0 39 1.4647 0.1087
1.2128 6.92 45 1.4184 0.1739
1.122 8.0 52 1.3262 0.1957
1.122 8.92 58 1.3298 0.1957
1.0062 10.0 65 1.2035 0.3696
0.872 10.92 71 1.3667 0.3261
0.872 12.0 78 1.2013 0.4348
0.814 12.92 84 0.9996 0.6957
0.7228 14.0 91 0.9706 0.7609
0.7228 14.92 97 0.9295 0.7391
0.6473 16.0 104 0.8988 0.7174
0.5696 16.92 110 0.9612 0.6739
0.5696 18.0 117 0.8713 0.7609
0.5546 18.92 123 0.8050 0.7609
0.4747 20.0 130 0.7725 0.7609
0.4747 20.92 136 0.7933 0.6957
0.4393 22.0 143 0.7665 0.6957
0.4393 22.92 149 0.7886 0.7174
0.4077 24.0 156 0.7824 0.7391
0.3326 24.92 162 0.7021 0.7391
0.3326 26.0 169 0.6346 0.8261
0.315 26.92 175 0.6163 0.8696
0.2729 28.0 182 0.6938 0.8043
0.2729 28.92 188 0.7417 0.8043
0.2218 30.0 195 0.6669 0.7826
0.2499 30.92 201 0.7111 0.7174
0.2499 32.0 208 0.6730 0.7826
0.2218 32.92 214 0.6512 0.8043
0.2037 34.0 221 0.7165 0.7391
0.2037 34.92 227 0.6300 0.8261
0.2367 36.0 234 0.7421 0.7826
0.1835 36.92 240 0.6644 0.8043
0.1835 38.0 247 0.6251 0.8261
0.2073 38.92 253 0.6431 0.7826
0.1643 40.0 260 0.6348 0.8043
0.1643 40.92 266 0.6192 0.8043
0.1685 42.0 273 0.6753 0.8043
0.1685 42.92 279 0.7440 0.7826
0.1539 44.0 286 0.7505 0.8043
0.1658 44.92 292 0.6331 0.8261
0.1658 46.0 299 0.6550 0.8043
0.1596 46.92 305 0.6824 0.8043
0.1534 48.0 312 0.6971 0.8043
0.1534 48.92 318 0.6347 0.8261
0.1677 50.0 325 0.6392 0.8261
0.1453 50.92 331 0.6369 0.8043
0.1453 52.0 338 0.6230 0.7826
0.1385 52.92 344 0.6432 0.7609
0.1221 54.0 351 0.6757 0.7391
0.1221 54.92 357 0.7383 0.7609
0.1433 56.0 364 0.7100 0.7609
0.1567 56.92 370 0.6862 0.7609
0.1567 58.0 377 0.6654 0.7609
0.1361 58.92 383 0.6665 0.7826
0.1157 60.0 390 0.6439 0.7826
0.1157 60.92 396 0.6306 0.8261
0.0934 62.0 403 0.6546 0.8043
0.0934 62.92 409 0.6651 0.8043
0.1123 64.0 416 0.6568 0.7609
0.0855 64.92 422 0.6507 0.7609
0.0855 66.0 429 0.6667 0.8043
0.1135 66.92 435 0.6516 0.7826
0.0932 68.0 442 0.6596 0.8043
0.0932 68.92 448 0.6772 0.8043
0.1228 70.0 455 0.6526 0.7609
0.0878 70.92 461 0.6731 0.8261
0.0878 72.0 468 0.6351 0.7826
0.1073 72.92 474 0.6269 0.7826
0.1028 73.85 480 0.6743 0.7826

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0