Augusto777's picture
End of training
7bbc02d verified
|
raw
history blame
6.56 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-ve-U13-b-80
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.782608695652174

swin-tiny-patch4-window7-224-ve-U13-b-80

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8901
  • Accuracy: 0.7826

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 1.3859 0.1304
1.3859 2.0 13 1.3828 0.2826
1.3859 2.92 19 1.3769 0.3261
1.379 4.0 26 1.3566 0.2826
1.3356 4.92 32 1.3162 0.2391
1.3356 6.0 39 1.2090 0.3696
1.2023 6.92 45 1.1409 0.4130
1.0289 8.0 52 1.0442 0.4565
1.0289 8.92 58 0.9696 0.5217
0.9132 10.0 65 1.0133 0.4348
0.7677 10.92 71 1.0144 0.5
0.7677 12.0 78 1.1377 0.3478
0.6988 12.92 84 0.8171 0.5870
0.6051 14.0 91 0.8983 0.6522
0.6051 14.92 97 0.8593 0.6087
0.5175 16.0 104 0.8189 0.6957
0.429 16.92 110 0.6790 0.7174
0.429 18.0 117 0.7074 0.6304
0.4349 18.92 123 0.8890 0.6957
0.3892 20.0 130 0.9798 0.6739
0.3892 20.92 136 0.8814 0.6739
0.3613 22.0 143 0.8840 0.6522
0.3613 22.92 149 0.7662 0.7391
0.342 24.0 156 0.7884 0.7609
0.2762 24.92 162 1.0268 0.6957
0.2762 26.0 169 0.9206 0.7174
0.2759 26.92 175 0.9080 0.6957
0.2559 28.0 182 0.9379 0.6739
0.2559 28.92 188 1.0121 0.6739
0.2455 30.0 195 0.8252 0.7391
0.2125 30.92 201 0.8501 0.7609
0.2125 32.0 208 1.0365 0.6739
0.2204 32.92 214 1.0470 0.7174
0.1785 34.0 221 0.8834 0.7174
0.1785 34.92 227 1.0780 0.7174
0.1912 36.0 234 0.9328 0.7174
0.1518 36.92 240 0.8901 0.7826
0.1518 38.0 247 1.1069 0.6739
0.166 38.92 253 0.9823 0.7174
0.1775 40.0 260 0.9713 0.6957
0.1775 40.92 266 0.9729 0.7174
0.1344 42.0 273 0.9957 0.7174
0.1344 42.92 279 1.0180 0.7391
0.1232 44.0 286 0.9669 0.7826
0.1267 44.92 292 0.9765 0.6957
0.1267 46.0 299 1.0389 0.7391
0.1548 46.92 305 1.0016 0.7174
0.1267 48.0 312 1.1565 0.7391
0.1267 48.92 318 1.1796 0.7174
0.1403 50.0 325 1.2807 0.6957
0.1096 50.92 331 1.2463 0.6739
0.1096 52.0 338 1.1454 0.6957
0.1106 52.92 344 1.1494 0.6957
0.1116 54.0 351 1.1300 0.6957
0.1116 54.92 357 1.2098 0.7174
0.1229 56.0 364 1.0591 0.7174
0.1235 56.92 370 1.1229 0.6957
0.1235 58.0 377 1.2034 0.7174
0.107 58.92 383 1.0628 0.7174
0.107 60.0 390 1.0070 0.7391
0.107 60.92 396 1.1602 0.7174
0.1167 62.0 403 1.0720 0.7174
0.1167 62.92 409 0.9726 0.7391
0.1113 64.0 416 1.0324 0.7174
0.0838 64.92 422 1.1092 0.7174
0.0838 66.0 429 1.1772 0.6957
0.083 66.92 435 1.1195 0.7174
0.0899 68.0 442 1.0681 0.7174
0.0899 68.92 448 1.1160 0.7174
0.0813 70.0 455 1.1435 0.7174
0.0782 70.92 461 1.1464 0.7174
0.0782 72.0 468 1.1539 0.7174
0.1014 72.92 474 1.1585 0.7174
0.0944 73.85 480 1.1592 0.7174

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0