Augusto777's picture
End of training
6b80442 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-DMAE-15e
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.10869565217391304

swinv2-tiny-patch4-window8-256-DMAE-15e

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 7.9238
  • Accuracy: 0.1087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 7.9238 0.1087
No log 2.0 7 7.8746 0.1087
7.9273 2.86 10 7.8185 0.1087
7.9273 4.0 14 7.6996 0.1087
7.9273 4.86 17 7.5876 0.1087
7.6529 6.0 21 7.4189 0.1087
7.6529 6.86 24 7.2678 0.1087
7.6529 8.0 28 7.0489 0.1087
7.1057 8.86 31 6.8846 0.1087
7.1057 10.0 35 6.6868 0.1087
7.1057 10.86 38 6.5595 0.1087
6.8483 12.0 42 6.3826 0.1087
6.8483 12.86 45 6.2276 0.1087
6.8483 14.0 49 6.0366 0.1087
6.224 14.86 52 5.9044 0.1087
6.224 16.0 56 5.7383 0.1087
6.224 16.86 59 5.6266 0.1087
5.8234 18.0 63 5.4871 0.1087
5.8234 18.86 66 5.3891 0.1087
5.5423 20.0 70 5.2672 0.1087
5.5423 20.86 73 5.1809 0.1087
5.5423 22.0 77 5.0741 0.1087
5.2547 22.86 80 5.0007 0.1087
5.2547 24.0 84 4.9116 0.1087
5.2547 24.86 87 4.8505 0.1087
5.0166 26.0 91 4.7770 0.1087
5.0166 26.86 94 4.7281 0.1087
5.0166 28.0 98 4.6712 0.1087
4.7751 28.86 101 4.6348 0.1087
4.7751 30.0 105 4.5943 0.1087
4.7751 30.86 108 4.5701 0.1087
4.7321 32.0 112 4.5458 0.1087
4.7321 32.86 115 4.5336 0.1087
4.7321 34.0 119 4.5255 0.1087
4.6731 34.29 120 4.5249 0.1087

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0