Augusto777's picture
Model save
24e935d verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-DMAE-4e-3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7391304347826086

swinv2-tiny-patch4-window8-256-DMAE-4e-3

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7507
  • Accuracy: 0.7391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8571 3 1.3959 0.3043
No log 1.7857 6 1.2662 0.3913
No log 2.7143 9 1.1960 0.4783
1.3226 3.9286 13 1.1950 0.4565
1.3226 4.8571 16 1.1891 0.4783
1.3226 5.7857 19 1.1898 0.4783
1.1833 6.7143 22 1.1824 0.5435
1.1833 7.9286 26 1.1618 0.5217
1.1833 8.8571 29 1.1359 0.5652
1.1384 9.7857 32 1.0974 0.5870
1.1384 10.7143 35 1.0524 0.5870
1.1384 11.9286 39 1.0083 0.6957
1.0628 12.8571 42 0.9696 0.6739
1.0628 13.7857 45 0.9369 0.6739
1.0628 14.7143 48 0.8825 0.7174
1.0069 15.9286 52 0.8396 0.6957
1.0069 16.8571 55 0.8267 0.7174
1.0069 17.7857 58 0.8275 0.7174
0.9339 18.7143 61 0.8255 0.7174
0.9339 19.9286 65 0.7899 0.7174
0.9339 20.8571 68 0.7604 0.7174
0.905 21.7857 71 0.7442 0.6957
0.905 22.7143 74 0.7361 0.7391
0.905 23.9286 78 0.7598 0.6957
0.8465 24.8571 81 0.7650 0.7174
0.8465 25.7857 84 0.7631 0.7391
0.8465 26.7143 87 0.7561 0.7174
0.8363 27.9286 91 0.7494 0.6957
0.8363 28.8571 94 0.7539 0.7174
0.8363 29.7857 97 0.7497 0.7174
0.7751 30.7143 100 0.7477 0.7174
0.7751 31.9286 104 0.7463 0.7609
0.7751 32.8571 107 0.7507 0.7609
0.7843 33.7857 110 0.7534 0.7391
0.7843 34.7143 113 0.7542 0.7391
0.7843 35.9286 117 0.7519 0.7391
0.7435 36.8571 120 0.7507 0.7391

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3