Augusto777's picture
End of training
cd98de2 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-DMAE-5e-1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.45652173913043476

swinv2-tiny-patch4-window8-256-DMAE-5e-1

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 54.3349
  • Accuracy: 0.4565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.5
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 343.8003 0.3261
No log 2.0 7 1260.1489 0.1087
517.6714 2.86 10 457.5103 0.3261
517.6714 4.0 14 180.1205 0.1087
517.6714 4.86 17 190.9627 0.1087
201.7487 6.0 21 54.3349 0.4565
201.7487 6.86 24 70.2849 0.3261
201.7487 8.0 28 57.7033 0.3261
64.7194 8.86 31 115.5257 0.1087
64.7194 10.0 35 72.7990 0.3261
64.7194 10.86 38 41.8670 0.4565
58.6249 12.0 42 26.2765 0.4565
58.6249 12.86 45 41.7245 0.3261
58.6249 14.0 49 23.6962 0.4565
49.7372 14.86 52 13.4265 0.3261
49.7372 16.0 56 7.0405 0.4565
49.7372 16.86 59 5.0777 0.4565
11.7669 18.0 63 13.5690 0.4565
11.7669 18.86 66 5.5425 0.1087
13.3323 20.0 70 6.4491 0.4565
13.3323 20.86 73 7.3066 0.3261
13.3323 22.0 77 10.8431 0.4565
9.2763 22.86 80 12.1588 0.3261
9.2763 24.0 84 5.4926 0.4565
9.2763 24.86 87 4.4689 0.3261
6.8526 26.0 91 3.7880 0.4565
6.8526 26.86 94 2.3297 0.4565
6.8526 28.0 98 2.8532 0.4565
3.0687 28.86 101 2.6943 0.1087
3.0687 30.0 105 2.0957 0.3261
3.0687 30.86 108 1.4001 0.4565
2.1059 32.0 112 1.3081 0.3261
2.1059 32.86 115 1.2392 0.3261
2.1059 34.0 119 1.2510 0.4565
1.3417 34.29 120 1.2338 0.4565

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0