metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-DMAE-5e-2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.45652173913043476
swinv2-tiny-patch4-window8-256-DMAE-5e-2
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 8.3393
- Accuracy: 0.4565
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.86 | 3 | 22.4107 | 0.3261 |
No log | 2.0 | 7 | 11.2632 | 0.3261 |
15.4384 | 2.86 | 10 | 8.3393 | 0.4565 |
15.4384 | 4.0 | 14 | 2.2808 | 0.1087 |
15.4384 | 4.86 | 17 | 2.9784 | 0.3261 |
4.9288 | 6.0 | 21 | 2.4757 | 0.3261 |
4.9288 | 6.86 | 24 | 2.5934 | 0.1087 |
4.9288 | 8.0 | 28 | 2.3187 | 0.4565 |
2.426 | 8.86 | 31 | 1.7270 | 0.3261 |
2.426 | 10.0 | 35 | 1.4868 | 0.4565 |
2.426 | 10.86 | 38 | 1.3056 | 0.3261 |
1.5653 | 12.0 | 42 | 1.2237 | 0.4565 |
1.5653 | 12.86 | 45 | 1.4644 | 0.4565 |
1.5653 | 14.0 | 49 | 1.2427 | 0.4565 |
1.4578 | 14.86 | 52 | 1.2474 | 0.3261 |
1.4578 | 16.0 | 56 | 1.3441 | 0.4565 |
1.4578 | 16.86 | 59 | 1.3480 | 0.3261 |
1.3492 | 18.0 | 63 | 1.2835 | 0.4565 |
1.3492 | 18.86 | 66 | 1.3153 | 0.4565 |
1.3089 | 20.0 | 70 | 1.2387 | 0.4565 |
1.3089 | 20.86 | 73 | 1.2538 | 0.3261 |
1.3089 | 22.0 | 77 | 1.2386 | 0.4565 |
1.2345 | 22.86 | 80 | 1.2612 | 0.3261 |
1.2345 | 24.0 | 84 | 1.2125 | 0.4565 |
1.2345 | 24.86 | 87 | 1.2079 | 0.4565 |
1.2105 | 26.0 | 91 | 1.2139 | 0.4565 |
1.2105 | 26.86 | 94 | 1.2171 | 0.4565 |
1.2105 | 28.0 | 98 | 1.2183 | 0.4565 |
1.2095 | 28.86 | 101 | 1.2094 | 0.4565 |
1.2095 | 30.0 | 105 | 1.2061 | 0.4565 |
1.2095 | 30.86 | 108 | 1.2069 | 0.4565 |
1.203 | 32.0 | 112 | 1.2073 | 0.4565 |
1.203 | 32.86 | 115 | 1.2072 | 0.4565 |
1.203 | 34.0 | 119 | 1.2067 | 0.4565 |
1.1996 | 34.29 | 120 | 1.2066 | 0.4565 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0