Augusto777's picture
End of training
b9ae101 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-DMAE-5e-2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.45652173913043476

swinv2-tiny-patch4-window8-256-DMAE-5e-2

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 8.3393
  • Accuracy: 0.4565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 22.4107 0.3261
No log 2.0 7 11.2632 0.3261
15.4384 2.86 10 8.3393 0.4565
15.4384 4.0 14 2.2808 0.1087
15.4384 4.86 17 2.9784 0.3261
4.9288 6.0 21 2.4757 0.3261
4.9288 6.86 24 2.5934 0.1087
4.9288 8.0 28 2.3187 0.4565
2.426 8.86 31 1.7270 0.3261
2.426 10.0 35 1.4868 0.4565
2.426 10.86 38 1.3056 0.3261
1.5653 12.0 42 1.2237 0.4565
1.5653 12.86 45 1.4644 0.4565
1.5653 14.0 49 1.2427 0.4565
1.4578 14.86 52 1.2474 0.3261
1.4578 16.0 56 1.3441 0.4565
1.4578 16.86 59 1.3480 0.3261
1.3492 18.0 63 1.2835 0.4565
1.3492 18.86 66 1.3153 0.4565
1.3089 20.0 70 1.2387 0.4565
1.3089 20.86 73 1.2538 0.3261
1.3089 22.0 77 1.2386 0.4565
1.2345 22.86 80 1.2612 0.3261
1.2345 24.0 84 1.2125 0.4565
1.2345 24.86 87 1.2079 0.4565
1.2105 26.0 91 1.2139 0.4565
1.2105 26.86 94 1.2171 0.4565
1.2105 28.0 98 1.2183 0.4565
1.2095 28.86 101 1.2094 0.4565
1.2095 30.0 105 1.2061 0.4565
1.2095 30.86 108 1.2069 0.4565
1.203 32.0 112 1.2073 0.4565
1.203 32.86 115 1.2072 0.4565
1.203 34.0 119 1.2067 0.4565
1.1996 34.29 120 1.2066 0.4565

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0