Augusto777's picture
End of training
60c95a4 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-DMAE-8e-6
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.10869565217391304

swinv2-tiny-patch4-window8-256-DMAE-8e-6

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 7.9427
  • Accuracy: 0.1087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 7.9427 0.1087
No log 2.0 7 7.9381 0.1087
7.9636 2.86 10 7.9301 0.1087
7.9636 4.0 14 7.9088 0.1087
7.9636 4.86 17 7.8857 0.1087
7.8732 6.0 21 7.8450 0.1087
7.8732 6.86 24 7.8049 0.1087
7.8732 8.0 28 7.7376 0.1087
7.6568 8.86 31 7.6783 0.1087
7.6568 10.0 35 7.5943 0.1087
7.6568 10.86 38 7.5288 0.1087
7.7458 12.0 42 7.4353 0.1087
7.7458 12.86 45 7.3610 0.1087
7.7458 14.0 49 7.2614 0.1087
7.3025 14.86 52 7.1894 0.1087
7.3025 16.0 56 7.0993 0.1087
7.3025 16.86 59 7.0348 0.1087
7.0862 18.0 63 6.9525 0.1087
7.0862 18.86 66 6.8945 0.1087
6.9553 20.0 70 6.8253 0.1087
6.9553 20.86 73 6.7795 0.1087
6.9553 22.0 77 6.7202 0.1087
6.8024 22.86 80 6.6757 0.1087
6.8024 24.0 84 6.6210 0.1087
6.8024 24.86 87 6.5785 0.1087
6.6652 26.0 91 6.5275 0.1087
6.6652 26.86 94 6.4949 0.1087
6.6652 28.0 98 6.4589 0.1087
6.467 28.86 101 6.4354 0.1087
6.467 30.0 105 6.4094 0.1087
6.467 30.86 108 6.3946 0.1087
6.4984 32.0 112 6.3796 0.1087
6.4984 32.86 115 6.3719 0.1087
6.4984 34.0 119 6.3668 0.1087
6.4603 34.29 120 6.3664 0.1087

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0