Augusto777's picture
Model save
b7284ed verified
|
raw
history blame
4.07 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-DMAE-ex
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.45652173913043476

swinv2-tiny-patch4-window8-256-DMAE-ex

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2080
  • Accuracy: 0.4565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.02
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 26.2016 0.1739
No log 2.0 7 1.3785 0.4565
12.975 2.86 10 2.2855 0.4565
12.975 4.0 14 1.5437 0.4565
12.975 4.86 17 1.5017 0.3261
2.1282 6.0 21 1.5409 0.1087
2.1282 6.86 24 1.4040 0.4565
2.1282 8.0 28 1.2780 0.4565
1.554 8.86 31 1.2300 0.3261
1.554 10.0 35 1.3228 0.3261
1.554 10.86 38 1.2745 0.4565
1.3748 12.0 42 1.3724 0.3261
1.3748 12.86 45 1.3726 0.4565
1.3748 14.0 49 1.2891 0.3261
1.5315 14.86 52 1.2979 0.4565
1.5315 16.0 56 1.2272 0.4565
1.5315 16.86 59 1.2749 0.3261
1.351 18.0 63 1.2219 0.4565
1.351 18.86 66 1.2200 0.4565
1.2678 20.0 70 1.2278 0.3261
1.2678 20.86 73 1.2318 0.4565
1.2678 22.0 77 1.2102 0.4565
1.244 22.86 80 1.2466 0.3261
1.244 24.0 84 1.2103 0.4565
1.244 24.86 87 1.2067 0.4565
1.2585 26.0 91 1.2129 0.4565
1.2585 26.86 94 1.2110 0.4565
1.2585 28.0 98 1.2131 0.4565
1.2405 28.86 101 1.2072 0.4565
1.2405 30.0 105 1.2099 0.4565
1.2405 30.86 108 1.2115 0.4565
1.2134 32.0 112 1.2138 0.4565
1.2134 32.86 115 1.2095 0.4565
1.2134 34.0 119 1.2081 0.4565
1.1982 34.29 120 1.2080 0.4565

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0