Augusto777's picture
End of training
aa15ee2 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-DMAE-ex
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.45652173913043476

swinv2-tiny-patch4-window8-256-DMAE-ex

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 11.3982
  • Accuracy: 0.4565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.1
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 45.5320 0.3261
No log 2.0 7 11.3982 0.4565
37.3882 2.86 10 14.6592 0.3261
37.3882 4.0 14 5.4321 0.4565
37.3882 4.86 17 2.1913 0.1087
7.8109 6.0 21 7.5738 0.1087
7.8109 6.86 24 8.5702 0.4565
7.8109 8.0 28 5.5301 0.1087
6.7711 8.86 31 2.6876 0.4565
6.7711 10.0 35 1.8742 0.1087
6.7711 10.86 38 1.5266 0.4565
1.7995 12.0 42 1.5311 0.1087
1.7995 12.86 45 1.4439 0.4565
1.7995 14.0 49 1.2218 0.4565
1.5366 14.86 52 1.3226 0.4565
1.5366 16.0 56 1.6288 0.1087
1.5366 16.86 59 1.7526 0.4565
1.5748 18.0 63 1.3699 0.3261
1.5748 18.86 66 1.2663 0.4565
1.3933 20.0 70 1.2222 0.4565
1.3933 20.86 73 1.2388 0.3261
1.3933 22.0 77 1.2831 0.4565
1.2788 22.86 80 1.2515 0.3261
1.2788 24.0 84 1.2105 0.4565
1.2788 24.86 87 1.2141 0.4565
1.2218 26.0 91 1.2215 0.4565
1.2218 26.86 94 1.2189 0.4565
1.2218 28.0 98 1.2102 0.4565
1.2039 28.86 101 1.2094 0.4565
1.2039 30.0 105 1.2065 0.4565
1.2039 30.86 108 1.2125 0.4565
1.2131 32.0 112 1.2107 0.4565
1.2131 32.86 115 1.2078 0.4565
1.2131 34.0 119 1.2068 0.4565
1.211 34.29 120 1.2067 0.4565

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0