Augusto777's picture
End of training
cfb6dc3 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-RH
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6822429906542056

swinv2-tiny-patch4-window8-256-RH

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6396
  • Accuracy: 0.6822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 8 4.6265 0.4112
4.5369 2.0 16 4.5295 0.4112
4.6305 3.0 24 4.1439 0.4112
4.0918 4.0 32 3.3693 0.4112
3.1767 5.0 40 2.4325 0.4112
3.1767 6.0 48 1.5422 0.4112
2.0113 7.0 56 0.8834 0.4112
1.0593 8.0 64 0.6790 0.5888
0.696 9.0 72 0.7044 0.5888
0.6893 10.0 80 0.6778 0.5888
0.6893 11.0 88 0.6866 0.5888
0.6961 12.0 96 0.6934 0.5888
0.7329 13.0 104 0.6915 0.5888
0.6948 14.0 112 0.6762 0.5888
0.6771 15.0 120 0.6795 0.5888
0.6771 16.0 128 0.6801 0.5888
0.6763 17.0 136 0.6820 0.5888
0.6822 18.0 144 0.6800 0.5888
0.6723 19.0 152 0.6741 0.5888
0.6757 20.0 160 0.6815 0.5888
0.6757 21.0 168 0.6729 0.5888
0.6711 22.0 176 0.6812 0.5888
0.6784 23.0 184 0.6781 0.5794
0.6665 24.0 192 0.6698 0.5794
0.6723 25.0 200 0.6647 0.5981
0.6723 26.0 208 0.6762 0.5794
0.6675 27.0 216 0.6597 0.5701
0.6628 28.0 224 0.6563 0.6355
0.6478 29.0 232 0.6791 0.5794
0.6642 30.0 240 0.6574 0.5888
0.6642 31.0 248 0.6556 0.5607
0.654 32.0 256 0.6523 0.5888
0.6602 33.0 264 0.6464 0.6262
0.6535 34.0 272 0.6450 0.6168
0.6506 35.0 280 0.6550 0.5794
0.6506 36.0 288 0.6438 0.6075
0.6533 37.0 296 0.6396 0.6822
0.6443 38.0 304 0.6383 0.6636
0.6263 39.0 312 0.6378 0.6449
0.6283 40.0 320 0.6379 0.6449

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0