Edit model card

swinv2-tiny-patch4-window8-256-ve-U13-b-80c

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7710
  • Accuracy: 0.7826

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 1.6333 0.1087
1.4981 2.0 13 1.6225 0.1087
1.4981 2.92 19 1.5921 0.1087
1.4704 4.0 26 1.5001 0.1087
1.4116 4.92 32 1.4078 0.1087
1.4116 6.0 39 1.2960 0.3478
1.3094 6.92 45 1.2926 0.3043
1.2014 8.0 52 1.1532 0.5435
1.2014 8.92 58 1.1059 0.4783
1.0577 10.0 65 0.9510 0.6304
0.9185 10.92 71 0.9695 0.4783
0.9185 12.0 78 0.8792 0.6087
0.8369 12.92 84 0.8616 0.6957
0.7406 14.0 91 0.7816 0.6957
0.7406 14.92 97 0.7638 0.7609
0.6929 16.0 104 0.7710 0.7826
0.6192 16.92 110 0.7471 0.6957
0.6192 18.0 117 0.7265 0.7391
0.5936 18.92 123 0.7841 0.7609
0.5125 20.0 130 0.9320 0.6739
0.5125 20.92 136 0.7512 0.7609
0.4905 22.0 143 0.7466 0.6957
0.4905 22.92 149 0.8030 0.6957
0.4315 24.0 156 0.8184 0.7391
0.4272 24.92 162 0.8196 0.6957
0.4272 26.0 169 0.8712 0.6957
0.4261 26.92 175 0.7834 0.6957
0.4217 28.0 182 0.8394 0.6739
0.4217 28.92 188 0.9941 0.6739
0.3502 30.0 195 0.8909 0.7174
0.368 30.92 201 0.9995 0.7174
0.368 32.0 208 0.9418 0.6739
0.3473 32.92 214 0.8595 0.6739
0.3079 34.0 221 0.9562 0.6957
0.3079 34.92 227 0.8992 0.6739
0.3226 36.0 234 0.9908 0.6739
0.2603 36.92 240 0.9469 0.6957
0.2603 38.0 247 0.9942 0.6739
0.3028 38.92 253 1.0084 0.6739
0.2576 40.0 260 0.9908 0.6957
0.2576 40.92 266 1.0661 0.6957
0.2713 42.0 273 1.1347 0.6522
0.2713 42.92 279 1.1054 0.6739
0.2578 44.0 286 1.1089 0.6957
0.2367 44.92 292 1.1452 0.6739
0.2367 46.0 299 1.0272 0.6957
0.2301 46.92 305 1.1043 0.6739
0.2191 48.0 312 1.0815 0.6739
0.2191 48.92 318 0.9934 0.6957
0.2635 50.0 325 1.0866 0.6957
0.1874 50.92 331 1.0507 0.7174
0.1874 52.0 338 1.1002 0.7174
0.2057 52.92 344 1.0400 0.6739
0.1808 54.0 351 1.1092 0.7174
0.1808 54.92 357 1.1550 0.7174
0.2107 56.0 364 1.0579 0.6957
0.2149 56.92 370 1.0936 0.6957
0.2149 58.0 377 1.1692 0.6957
0.1865 58.92 383 1.1357 0.7174
0.1832 60.0 390 1.1549 0.6739
0.1832 60.92 396 1.1631 0.6957
0.1732 62.0 403 1.1312 0.6957
0.1732 62.92 409 1.1210 0.6957
0.1856 64.0 416 1.1835 0.6739
0.1503 64.92 422 1.1892 0.7174
0.1503 66.0 429 1.1865 0.6739
0.1713 66.92 435 1.1608 0.6739
0.1804 68.0 442 1.1699 0.6739
0.1804 68.92 448 1.1694 0.7174
0.1761 70.0 455 1.1744 0.6957
0.1619 70.92 461 1.1783 0.6957
0.1619 72.0 468 1.1797 0.6957
0.1649 72.92 474 1.1788 0.6957
0.1843 73.85 480 1.1780 0.6957

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Augusto777/swinv2-tiny-patch4-window8-256-ve-U13-b-80c

Finetuned
(46)
this model

Evaluation results