swinv2-tiny-patch4-window8-256-ve-Ub

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 8.0201
  • Accuracy: 0.0980

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.57 1 8.0201 0.0980
No log 1.71 3 8.0044 0.0980
No log 2.86 5 7.9306 0.0980
No log 4.0 7 7.7713 0.0980
No log 4.57 8 7.6511 0.0980
7.7785 5.71 10 7.3653 0.0980
7.7785 6.86 12 7.0246 0.0980
7.7785 8.0 14 6.6413 0.0980
7.7785 8.57 15 6.4670 0.0980
7.7785 9.71 17 6.1321 0.0980
7.7785 10.86 19 5.8360 0.0980
6.5357 12.0 21 5.5743 0.0980
6.5357 12.57 22 5.4552 0.0980
6.5357 13.71 24 5.2367 0.0980
6.5357 14.86 26 5.0418 0.0980
6.5357 16.0 28 4.8706 0.0980
6.5357 16.57 29 4.7939 0.0980
5.2494 17.71 31 4.6596 0.0980
5.2494 18.86 33 4.5508 0.0980
5.2494 20.0 35 4.4676 0.0980
5.2494 20.57 36 4.4356 0.0980
5.2494 21.71 38 4.3906 0.0980
4.5614 22.86 40 4.3714 0.0980

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
33
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Augusto777/swinv2-tiny-patch4-window8-256-ve-Ub

Finetuned
(78)
this model

Evaluation results