Augusto777's picture
End of training
c2468cf verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-ve-U13-b-80
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8695652173913043

vit-base-patch16-224-ve-U13-b-80

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5742
  • Accuracy: 0.8696

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 1.3848 0.3478
1.3848 2.0 13 1.3692 0.5217
1.3848 2.92 19 1.3184 0.5870
1.352 4.0 26 1.2217 0.4565
1.2316 4.92 32 1.1418 0.4783
1.2316 6.0 39 1.0689 0.4783
1.0849 6.92 45 0.9931 0.5870
0.9314 8.0 52 0.9458 0.6957
0.9314 8.92 58 0.8675 0.6957
0.8001 10.0 65 0.8148 0.7174
0.6493 10.92 71 0.7692 0.7609
0.6493 12.0 78 0.6428 0.8043
0.5145 12.92 84 0.6025 0.8261
0.379 14.0 91 0.5621 0.8043
0.379 14.92 97 0.5298 0.8478
0.2942 16.0 104 0.5791 0.8043
0.2096 16.92 110 0.5814 0.7826
0.2096 18.0 117 0.7829 0.7174
0.2113 18.92 123 0.5658 0.8478
0.2143 20.0 130 0.7036 0.7609
0.2143 20.92 136 0.5924 0.7826
0.1752 22.0 143 0.6852 0.7609
0.1752 22.92 149 0.7237 0.7609
0.1238 24.0 156 0.6743 0.8043
0.1401 24.92 162 0.8463 0.6957
0.1401 26.0 169 0.7872 0.7609
0.1544 26.92 175 0.5492 0.8261
0.1163 28.0 182 0.5756 0.8043
0.1163 28.92 188 0.7621 0.7609
0.1121 30.0 195 0.6972 0.7826
0.1065 30.92 201 0.5723 0.8261
0.1065 32.0 208 0.7503 0.8261
0.1021 32.92 214 0.6127 0.8043
0.1048 34.0 221 0.5734 0.8478
0.1048 34.92 227 0.5817 0.8478
0.0848 36.0 234 0.5903 0.8261
0.0769 36.92 240 0.7074 0.8261
0.0769 38.0 247 0.5835 0.8478
0.0825 38.92 253 0.6373 0.8043
0.0676 40.0 260 0.6793 0.8261
0.0676 40.92 266 0.6556 0.8261
0.0703 42.0 273 0.6329 0.8478
0.0703 42.92 279 0.6868 0.8261
0.0574 44.0 286 0.5997 0.8043
0.0523 44.92 292 0.5846 0.8261
0.0523 46.0 299 0.7214 0.8478
0.064 46.92 305 0.5230 0.8478
0.082 48.0 312 0.5850 0.8478
0.082 48.92 318 0.6346 0.8478
0.0694 50.0 325 0.6389 0.8261
0.0462 50.92 331 0.5813 0.8478
0.0462 52.0 338 0.5792 0.8478
0.044 52.92 344 0.5724 0.8261
0.0538 54.0 351 0.6294 0.8261
0.0538 54.92 357 0.5742 0.8696
0.0455 56.0 364 0.6951 0.8043
0.0537 56.92 370 0.6458 0.8043
0.0537 58.0 377 0.6259 0.8478
0.038 58.92 383 0.6748 0.8478
0.039 60.0 390 0.7236 0.8261
0.039 60.92 396 0.7758 0.8261
0.0304 62.0 403 0.7253 0.7609
0.0304 62.92 409 0.7513 0.8261
0.051 64.0 416 0.7547 0.8261
0.0355 64.92 422 0.8115 0.7826
0.0355 66.0 429 0.7768 0.8043
0.0435 66.92 435 0.7829 0.8043
0.0313 68.0 442 0.7787 0.8043
0.0313 68.92 448 0.7721 0.8261
0.0378 70.0 455 0.7672 0.8261
0.0339 70.92 461 0.7634 0.8261
0.0339 72.0 468 0.7615 0.8261
0.0311 72.92 474 0.7605 0.8261
0.0302 73.85 480 0.7603 0.8261

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0