DeepakKumarMSL's picture
Create README.md
328056f verified
|
raw
history blame
1.8 kB

🧠 Code Generation Model – Fine-Tuned Salesforce/codegen-350M-multi

This repository contains a fine-tuned version of the Salesforce/codegen-350M-multi model. It generates code snippets based on natural language or function signature prompts.


πŸ“¦ Base Model

  • Model: Salesforce/codegen-350M-multi
  • Architecture: Causal LM (Decoder-only Transformer)
  • Parameters: ~350M
  • Supports: Python, JavaScript, Java, and more
  • Quantized: βœ… FP16 using bitsandbytes (optional)

πŸ“š Dataset

Dataset: code_x_glue_cc_code_to_text

  • Source: Hugging Face Datasets
  • Description: Dataset of code snippets (in Python) and corresponding natural language docstrings.
from datasets import load_dataset

dataset = load_dataset("code_x_glue_cc_code_to_text", "python")

πŸ“Š Evaluation (Scoring)

Metric: BLEU or CodeBLEU (you can also use exact match, ROUGE, etc.)


from datasets import load_metric

bleu = load_metric("bleu")
bleu_score = bleu.compute(predictions=["generated_code"], references=["reference_code"])
print("BLEU Score:", bleu_score)

πŸ“ Folder Structure

finetuned_codegen_350M/ β”œβ”€β”€ config.json β”œβ”€β”€ pytorch_model.bin β”œβ”€β”€ tokenizer_config.json β”œβ”€β”€ tokenizer.json β”œβ”€β”€ special_tokens_map.json β”œβ”€β”€ vocab.json β”œβ”€β”€ merges.txt β”œβ”€β”€ training_args.bin └── README.md

πŸ’¬ Inference Example


from transformers import pipeline

pipe = pipeline("text-generation", model="./finetuned_codegen_350M", device=0)

prompt = "def is_prime(n):"
result = pipe(prompt, max_length=100, do_sample=True)
print(result[0]["generated_text"])