YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
π Question Answers Roberta Model
This repository demonstrates how to fine-tune and quantize the deepset/roberta-base-squad2 model for Question Answering using a sample dataset from Hugging Face Hub.
π Model Overview
- Base Model:
deepset/roberta-base-squad2
- Task: Extractive Question Answering
- Precision: Supports FP32, FP16 (half-precision), and INT8 (quantized)
- Dataset:
squad
β Stanford Question Answering Dataset (Hugging Face Datasets)
π¦ Dataset Used
We use the squad
dataset from Hugging Face:
pip install datasets
Dataset
from datasets import load_dataset
dataset = load_dataset("squad")
Load Model & Tokenizer:
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, TrainingArguments, Trainer
from datasets import load_dataset
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
dataset = load_dataset("squad")
β Results
Feature Benefit FP16 Fine-Tuning - Faster Training + Lower Memory INT8 Quantization - Smaller Model + Fast Inference Dataset - Stanford QA Dataset (SQuAD)
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support