File size: 1,328 Bytes
ffd7d21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# π Question Answers Roberta Model
This repository demonstrates how to **fine-tune** and **quantize** the [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) model for Question Answering using a sample dataset from Hugging Face Hub.
---
## π Model Overview
- **Base Model:** `deepset/roberta-base-squad2`
- **Task:** Extractive Question Answering
- **Precision:** Supports FP32, FP16 (half-precision), and INT8 (quantized)
- **Dataset:** [`squad`](https://huggingface.co/datasets/squad) β Stanford Question Answering Dataset (Hugging Face Datasets)
---
## π¦ Dataset Used
We use the **`squad`** dataset from Hugging Face:
```bash
pip install datasets
```
# Dataset
```Pyhton
from datasets import load_dataset
dataset = load_dataset("squad")
```
# Load Model & Tokenizer:
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, TrainingArguments, Trainer
from datasets import load_dataset
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
dataset = load_dataset("squad")
```
# β
Results
Feature Benefit
FP16 Fine-Tuning - Faster Training + Lower Memory
INT8 Quantization - Smaller Model + Fast Inference
Dataset - Stanford QA Dataset (SQuAD) |