File size: 4,172 Bytes
1695f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f976f
1695f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# 🧠 Resume-Parsing-NER-AI-Model

A custom Named Entity Recognition (NER) model fine-tuned on annotated resume data using a pre-trained BERT architecture. This model extracts structured information such as names, emails, phone numbers, skills, job titles, education, and companies from raw resume text.

---


## ✨ Model Highlights

- πŸ“Œ Base Model: bert-base-cased-resume-ner
- πŸ“š Datasets: Custom annotated resume dataset (BIO format)
- 🏷️ Entity Labels: Name, Email, Phone, Education, Skills, Company, Job Title
- πŸ”§ Framework: Hugging Face Transformers + PyTorch
- πŸ’Ύ Format: transformers model directory (with tokenizer and config)

---


## 🧠 Intended Uses

- βœ… Resume parsing and candidate data extraction
- βœ… Applicant Tracking Systems (ATS)
- βœ… Automated HR screening tools
- βœ… Resume data analytics and visualization
- βœ… Chatbots and document understanding applications

---

## 🚫 Limitations

- ❌ Performance may degrade on resumes with non-standard formatting
- ❌ Might not capture entities in handwritten or image-based resumes
- ❌ May not generalize to other document types without re-training

---

## πŸ‹οΈβ€β™‚οΈ Training Details

| Attribute          | Value                            |
|--------------------|----------------------------------|
| Base Model         | bert-base-cased                  |
| Dataset            | Food-101-Dataset                 |
| Task Type          | Token Classification (NER)       |
| Epochs             | 3                                |
| Batch Size         | 16                               |
| Optimizer          | AdamW                            |
| Loss Function      | CrossEntropyLoss                 |
| Framework          | PyTorch + Transformers           |
| Hardware           | CUDA-enabled GPU                 |

---

## πŸ“Š Evaluation Metrics


| Metric                                          | Score |
| ----------------------------------------------- | ----- |
| Accuracy                                        | 0.98  |
| F1-Score                                        | 0.98  |
| Precision                                       | 0.97  |
| Recall                                          | 0.98  |


---

πŸš€ Usage
```python
from datasets import load_dataset
from transformers import AutoTokenizer,
from transformers import AutoModelForTokenClassification,
from transformers import TrainingArguments, Trainer
from transformers import pipeline


# Load model and processor
model_name = "AventIQ-AI/Resume-Parsing-NER-AI-Model"
model = AutoModelForImageClassification.from_pretrained("bert-base-cased")

from transformers import pipeline

ner_pipe = pipeline("ner", model="./resume-ner-model", tokenizer="./resume-ner-model", aggregation_strategy="simple")

text = "John worked at Infosys as an Analyst. Email: [email protected]"
ner_results = ner_pipe(text)

for entity in ner_results:
    print(f"{entity['word']} β†’ {entity['entity_group']} ({entity['score']:.2f})")
label_list = [
    "O",           # 0
    "B-NAME",      # 1
    "I-NAME",      # 2
    "B-EMAIL",     # 3
    "I-EMAIL",     # 4
    "B-PHONE",     # 5
    "I-PHONE",     # 6
    "B-EDUCATION", # 7
    "I-EDUCATION", # 8
    "B-SKILL",     # 9
    "I-SKILL",     # 10
    "B-COMPANY",   # 11
    "I-COMPANY",   # 12
    "B-JOB",       # 13
    "I-JOB"        # 14
]

```
---

- 🧩 Quantization
- Post-training static quantization applied using PyTorch to reduce model size and accelerate inference on edge devices.

----

πŸ—‚ Repository Structure
```
.
beans-vit-finetuned/
β”œβ”€β”€ config.json               βœ… Model configuration
β”œβ”€β”€ pytorch_model.bin         βœ… Fine-tuned model weights
β”œβ”€β”€ tokenizer_config.json     βœ… Tokenizer configuration
β”œβ”€β”€ vocab.txt                 βœ… BERT vocabulary
β”œβ”€β”€ training_args.bin         βœ… Training parameters
β”œβ”€β”€ preprocessor_config.json  βœ… Optional tokenizer pre-processing info
β”œβ”€β”€ README.md                 βœ… Model card

```
---
🀝 Contributing

Open to improvements and feedback! Feel free to submit a pull request or open an issue if you find any bugs or want to enhance the model.