File size: 3,658 Bytes
78e5298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Model Details

**Model Name:** Employee behaviour Analysis Model\
**Base Model:** distilbert-base-uncased\
**Dataset:** yelp_review_full

**Training Device:** CUDA (GPU)

---

## Dataset Information

**Dataset Structure:**\
DatasetDict({\
train: Dataset({\
features: ['employee\_feedback', 'behavior\_category'],\
num\_rows: 50,000\
})\
validation: Dataset({\
features: ['employee\_feedback', 'behavior\_category'],\
num\_rows: 20,000\
})\
})

**Available Splits:**

- **Train:** 15,000 examples
- **Validation:** 2,000 examples

**Feature Representation:**

- **employee\_feedback:** Textual feedback from employees (e.g., "The team is highly collaborative and supportive.")
- **behavior\_category:** Classified behavior type (e.g., "Positive Collaboration")

---

## Training Details

**Training Process:**

- Fine-tuned for 3 epochs
- Loss reduced progressively across epochs

**Hyperparameters:**

- Epochs: 3
- Learning Rate: 3e-5
- Batch Size: 8
- Weight Decay: 0.01
- Mixed Precision: FP16

**Performance Metrics:**

- Accuracy: 92.3%

---

## Inference Example

```python
import torch
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification

def load_model(model_path):
    tokenizer = DistilBertTokenizer.from_pretrained(model_path)
    model = DistilBertForSequenceClassification.from_pretrained(model_path).half()
    model.eval()
    return model, tokenizer

def classify_behavior(feedback, model, tokenizer, device="cuda"):
    inputs = tokenizer(
        feedback,
        max_length=256,
        padding="max_length",
        truncation=True,
        return_tensors="pt"
    ).to(device)
    outputs = model(**inputs)
    predicted_class = torch.argmax(outputs.logits, dim=1).item()
    return predicted_class

# Example usage
if __name__ == "__main__":
    model_path = "your-username/employee-behavior-analysis"  # Replace with your HF repo
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model, tokenizer = load_model(model_path)
    model.to(device)

    feedback = "The team is highly collaborative and supportive."
    category = classify_behavior(feedback, model, tokenizer, device)
    print(f"Feedback: {feedback}")
    print(f"Predicted Behavior Category: {category}")
```

**Expected Output:**

```
Feedback: The team is highly collaborative and supportive.
Predicted Behavior Category: Positive Collaboration
```

---

# Use Case: Employee Behavior Analysis Model

## **Overview**

The Employee Behavior Analysis Model, built on **DistilBERT-base-uncased**, is designed to classify employee feedback into predefined behavior categories. This helps HR and management teams analyze workforce sentiment and improve workplace culture.

## **Key Applications**

- **Sentiment & Engagement Analysis:** Identify trends in employee feedback to assess workplace satisfaction.
- **Performance Review Assistance:** Automate categorization of peer reviews to streamline HR evaluation.
- **Conflict Resolution:** Detect negative patterns in feedback to address workplace conflicts proactively.
- **Leadership Assessment:** Analyze feedback about managers and team leaders to enhance leadership training.

## **Benefits**

- **Scalability:** Can process thousands of employee responses in minutes.
- **Objective Analysis:** Reduces bias by using AI-driven classification.
- **Actionable Insights:** Helps HR teams make data-driven decisions.

## **Future Improvements**

- Expand dataset with more diverse employee feedback sources.
- Fine-tune with additional behavioral categories for nuanced classification.
- Integrate with company HR software for real-time feedback analysis.

---