distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0232
- Accuracy: {'accuracy': 0.889}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.4070 | {'accuracy': 0.882} |
0.3737 | 2.0 | 500 | 0.4423 | {'accuracy': 0.873} |
0.3737 | 3.0 | 750 | 0.8375 | {'accuracy': 0.868} |
0.1851 | 4.0 | 1000 | 0.7292 | {'accuracy': 0.885} |
0.1851 | 5.0 | 1250 | 0.8958 | {'accuracy': 0.895} |
0.0741 | 6.0 | 1500 | 0.8747 | {'accuracy': 0.889} |
0.0741 | 7.0 | 1750 | 0.9911 | {'accuracy': 0.888} |
0.0267 | 8.0 | 2000 | 1.0290 | {'accuracy': 0.886} |
0.0267 | 9.0 | 2250 | 1.0253 | {'accuracy': 0.89} |
0.0102 | 10.0 | 2500 | 1.0232 | {'accuracy': 0.889} |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 1
Model tree for Aymeric-M/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased