distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0232
  • Accuracy: {'accuracy': 0.889}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4070 {'accuracy': 0.882}
0.3737 2.0 500 0.4423 {'accuracy': 0.873}
0.3737 3.0 750 0.8375 {'accuracy': 0.868}
0.1851 4.0 1000 0.7292 {'accuracy': 0.885}
0.1851 5.0 1250 0.8958 {'accuracy': 0.895}
0.0741 6.0 1500 0.8747 {'accuracy': 0.889}
0.0741 7.0 1750 0.9911 {'accuracy': 0.888}
0.0267 8.0 2000 1.0290 {'accuracy': 0.886}
0.0267 9.0 2250 1.0253 {'accuracy': 0.89}
0.0102 10.0 2500 1.0232 {'accuracy': 0.889}

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Aymeric-M/distilbert-base-uncased-lora-text-classification

Adapter
(229)
this model