language:
- zh
- en
license: apache-2.0
datasets:
- Azure99/blossom-chat-v3
- Azure99/blossom-math-v4
- Azure99/blossom-wizard-v3
- Azure99/blossom-orca-v3
model-index:
- name: blossom-v5.1-34b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 72.64
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Azure99/blossom-v5.1-34b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 67.18
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Azure99/blossom-v5.1-34b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 54.44
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Azure99/blossom-v5.1-34b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 90.88
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Azure99/blossom-v5.1-34b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 82.94
name: pearson
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Azure99/blossom-v5.1-34b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 81.88
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Azure99/blossom-v5.1-34b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 85.2
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Azure99/blossom-v5.1-34b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 72.09
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Azure99/blossom-v5.1-34b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 72.13
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=Azure99/blossom-v5.1-34b
name: Open Portuguese LLM Leaderboard
BLOSSOM-v5.1-34b
Introduction
Blossom is a conversational large language model, fine-tuned on the Blossom Orca/Wizard/Chat/Math mixed dataset based on the Yi-1.5-34B pre-trained model. Blossom possesses robust general capabilities and context comprehension. Additionally, the high-quality Chinese and English datasets used for training have been made open source.
Training was conducted in two stages. The first stage used 40K Wizard, 40K Orca, 10K Math single-turn instruction datasets, training for 1 epoch; the second stage used 10K Blossom chat multi-turn dialogue dataset, and 10% randomly sampled data from the first stage, training for 3 epochs.
Inference
Inference is performed in the form of dialogue continuation.
Single-turn dialogue
A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions.
|Human|: hello
|Bot|:
Multi-turn dialogue
A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions.
|Human|: hello
|Bot|: Hello! How can I assist you today?<|endoftext|>
|Human|: Generate a random number using python
|Bot|:
Note: At the end of the Bot's output in the historical conversation, append a <|endoftext|>
.
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 75.49 |
ENEM Challenge (No Images) | 72.64 |
BLUEX (No Images) | 67.18 |
OAB Exams | 54.44 |
Assin2 RTE | 90.88 |
Assin2 STS | 82.94 |
FaQuAD NLI | 81.88 |
HateBR Binary | 85.20 |
PT Hate Speech Binary | 72.09 |
tweetSentBR | 72.13 |