BDAIO's picture
End of training
1041ba8 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: result-colab-with_tokenizer
    results: []

result-colab-with_tokenizer

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3390
  • Accuracy: 0.8945
  • Precision: 0.8847
  • Recall: 0.8927
  • F1: 0.8869

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.2288 1.0 48 0.9276 0.6789 0.5929 0.6138 0.5825
0.7686 2.0 96 0.5879 0.7661 0.7354 0.7159 0.7019
0.5665 3.0 144 0.4706 0.8440 0.8498 0.8238 0.8281
0.4813 4.0 192 0.4045 0.8578 0.8514 0.8329 0.8354
0.3716 5.0 240 0.3770 0.8624 0.8566 0.8398 0.8426
0.3535 6.0 288 0.3538 0.8853 0.8760 0.8664 0.8690
0.2511 7.0 336 0.3626 0.8716 0.8631 0.8573 0.8591
0.2826 8.0 384 0.3490 0.8899 0.8809 0.8886 0.8823
0.2295 9.0 432 0.3372 0.8807 0.8697 0.8720 0.8705
0.181 10.0 480 0.3410 0.8853 0.8743 0.8789 0.8757
0.178 11.0 528 0.3416 0.8945 0.8847 0.8927 0.8869
0.208 12.0 576 0.3390 0.8945 0.8847 0.8927 0.8869

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1