Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
strict: false

# dataset
datasets:
    - path: BEE-spoke-data/bees-internal
      type: completion # format from earlier
      field: text # Optional[str] default: text, field to use for completion data
val_set_size: 0.05

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false
group_by_length: false

# WANDB
wandb_project: llama3-8bee
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: llama3-8bee-8192
hub_model_id: pszemraj/Meta-Llama-3-8Bee
hub_strategy: every_save

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-5

load_in_8bit: false
load_in_4bit: false
bf16: auto
fp16:
tf32: true

torch_compile: true # requires >= torch 2.0, may sometimes cause problems
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
logging_steps: 10
xformers_attention:
flash_attention: true

warmup_steps: 25
# hyperparams for freq of evals, saving, etc
evals_per_epoch: 3
saves_per_epoch: 3
save_safetensors: true
save_total_limit: 1 # Checkpoints saved at a time
output_dir: ./output-axolotl/output-model-gamma
resume_from_checkpoint:


deepspeed:
weight_decay: 0.0

special_tokens:
  pad_token: <|end_of_text|>

Meta-Llama-3-8Bee

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the BEE-spoke-data/bees-internal dataset (continued pretraining). It achieves the following results on the evaluation set:

  • Loss: 2.3319

Intended uses & limitations

  • unveiling knowledge about bees and apiary practice
  • needs further tuning to be used in 'instruct' type settings

Training and evaluation data

🐝🍯

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 25
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
No log 0.0 1 2.5339
2.3719 0.33 232 2.3658
2.2914 0.67 464 2.3319

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.3.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 14.49
IFEval (0-Shot) 19.51
BBH (3-Shot) 24.20
MATH Lvl 5 (4-Shot) 3.85
GPQA (0-shot) 8.50
MuSR (0-shot) 6.24
MMLU-PRO (5-shot) 24.66
Downloads last month
338
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BEE-spoke-data/Meta-Llama-3-8Bee

Finetuned
(385)
this model
Quantizations
1 model

Dataset used to train BEE-spoke-data/Meta-Llama-3-8Bee

Spaces using BEE-spoke-data/Meta-Llama-3-8Bee 6

Collection including BEE-spoke-data/Meta-Llama-3-8Bee