|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: ': Nuestro Plan de Bacheo continúa acabando con los huecos de los diversos |
|
sectores de nuestro municipio. Estuvimos interviniendo la Av. Ppal. de y la Calle |
|
El Rocío de .' |
|
- text: buenos días un cordial saludo es para preguntar como puedo hacer para adquirir |
|
otro plan ya q no tengo papeles del codificador la dueña lo vendío y se fue del |
|
país y no pude contactarla mas no me entregó documentos todo esta legal pero quiero |
|
ponerlo a mi nombre |
|
- text: Si los empresarios facturan sus ventas a precio internacional (Dólares), entonces |
|
porque no le exigirnos salarios con valor internacional?. Osea el salario mínimo |
|
desde 400$ al cambio! Unos 11 millones de BS Soberanos!. Lo que es igual no es |
|
trampa!. |
|
- text: Coño cuál juego de la violencia Henry,aquí la violencia viene de un solo lado,en |
|
El Tocuyo y Carora cazaron a esos muchachos como animales |
|
- text: Una vez más vuelvo y digo . COMO ODIO SENTIRME DOMINADA X EL DOLAR nojoda |
|
si no tengo una mierda de esa entonces no comemos mis hijos y yo tengo unas ganas |
|
de quemar con todo y persona el malnacido que solo está exigiendo verdes para |
|
venderte comida |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: sentence-transformers/distiluse-base-multilingual-cased-v1 |
|
model-index: |
|
- name: SetFit with sentence-transformers/distiluse-base-multilingual-cased-v1 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 1.0 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/distiluse-base-multilingual-cased-v1 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/distiluse-base-multilingual-cased-v1](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/distiluse-base-multilingual-cased-v1](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0 | <ul><li>'Federer, Nadal y Djoković han gobernado con mano de hierro el tenis mundial en esta era. Se va el primero, el que empezó a instalar la tiranía. No somos conscientes de lo que se va con Roger. Afortunados de poder vivir uno de los momentos del deporte más gloriosos. Sin dudas.'</li><li>'Nuestro primer viaje deportivo mayerlingaranguren ! El primero de muchos... en Distrito Federal,…'</li><li>'Por nuestro país y el futuro de nuestros hijos.'</li></ul> | |
|
| 1 | <ul><li>'¡Aquí estoy!, la depresión y tristeza por problemas económicos no me va a matar. Viviré a pesar de los 3 $ que como ingeniero jubilado me pagan mensual el gobierno. Ofrezco mis servicios en impermeabilización de techos y platabandas. Me disculpan que lo haga por este medio.'</li><li>'.: Remontarse a los precios de diciembre de 2017 generará más desempleo'</li><li>'Tengo media hora intentando comprar $ por banesco y no hay disponible en la mesa de cambio'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 1.0 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("setfit_model_id") |
|
# Run inference |
|
preds = model("Coño cuál juego de la violencia Henry,aquí la violencia viene de un solo lado,en El Tocuyo y Carora cazaron a esos muchachos como animales") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 1 | 30.0686 | 76 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 122 | |
|
| 1 | 53 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (32, 32) |
|
- num_epochs: (2, 2) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (0.0001, 0.0001) |
|
- head_learning_rate: 0.0001 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0018 | 1 | 0.408 | - | |
|
| 0.0894 | 50 | 0.0144 | - | |
|
| 0.1789 | 100 | 0.0002 | - | |
|
| 0.2683 | 150 | 0.0 | - | |
|
| 0.3578 | 200 | 0.0 | - | |
|
| 0.4472 | 250 | 0.0 | - | |
|
| 0.5367 | 300 | 0.0 | - | |
|
| 0.6261 | 350 | 0.0 | - | |
|
| 0.7156 | 400 | 0.0 | - | |
|
| 0.8050 | 450 | 0.0 | - | |
|
| 0.8945 | 500 | 0.0 | - | |
|
| 0.9839 | 550 | 0.0 | - | |
|
| 1.0733 | 600 | 0.0 | - | |
|
| 1.1628 | 650 | 0.0 | - | |
|
| 1.2522 | 700 | 0.0 | - | |
|
| 1.3417 | 750 | 0.0 | - | |
|
| 1.4311 | 800 | 0.0 | - | |
|
| 1.5206 | 850 | 0.0 | - | |
|
| 1.6100 | 900 | 0.0 | - | |
|
| 1.6995 | 950 | 0.0 | - | |
|
| 1.7889 | 1000 | 0.0 | - | |
|
| 1.8784 | 1050 | 0.0 | - | |
|
| 1.9678 | 1100 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.1 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.35.2 |
|
- PyTorch: 2.1.0+cu118 |
|
- Datasets: 2.15.0 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |