|
## BUDDI Table Factory: A toolbox for generating synthetic documents with annotated tables and cells |
|
|
|
|
|
**About** |
|
|
|
In table detection, we initialize the weights with a pre-trained CDeCNet model using COCO dataset. We re-train the model for five epochs using a stochastic gradient descent optimizer with a learning rate of 0.00125, the momentum of 0.9, and weight decay of 0.0001. |
|
|
|
***Hardware Used*** |
|
|
|
We perform all the experiments on NVIDIA GeForce RTX 2080 Ti GPU with 12 GB GPU memory, Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz, and 128 GB of RAM. |
|
|
|
**Table Detection Model & Training Parameter** |
|
***Optimizer*** |
|
| Parameter |Value | |
|
|--|--| |
|
| Type | SGD | |
|
| Learning Rate |0.00125 | |
|
| Momentum | 0.8 | |
|
| Weight Decay |0.001 | |
|
|
|
|
|
*** Learning Policy *** |
|
| Parameter |Value | |
|
|--|--| |
|
| Policy | Step | |
|
|Warmup | Linear | |
|
| Warmup Iteration | 100 | |
|
| Warmup Ratio |0.001 | |
|
| Step | 4,16,32 | |
|
|
|
***General Parameter*** |
|
| Parameter |Value | |
|
|--|--| |
|
| Epoch | 5 | |
|
| Step Interval |50 | |
|
|
|
***Model Paper Reference*** |
|
|
|
CDeC-Net: Composite Deformable Cascade Network for Table Detection in Document Images |
|
|
|
https://arxiv.org/abs/2008.10831 |