LayoutLM_2

This model is a fine-tuned version of BadreddineHug/LayoutLM_1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4785
  • Precision: 0.6599
  • Recall: 0.7638
  • F1: 0.7080
  • Accuracy: 0.9097

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 3.7 100 0.4266 0.6597 0.7480 0.7011 0.9110
No log 7.41 200 0.4415 0.6575 0.7559 0.7033 0.9084
No log 11.11 300 0.4478 0.6575 0.7559 0.7033 0.9084
No log 14.81 400 0.4481 0.6690 0.7638 0.7132 0.9123
0.0237 18.52 500 0.4551 0.6644 0.7638 0.7106 0.9097
0.0237 22.22 600 0.4542 0.6736 0.7638 0.7159 0.9097
0.0237 25.93 700 0.4536 0.6783 0.7638 0.7185 0.9123
0.0237 29.63 800 0.4662 0.6644 0.7638 0.7106 0.9097
0.0237 33.33 900 0.4716 0.6486 0.7559 0.6982 0.9071
0.0146 37.04 1000 0.4644 0.6577 0.7717 0.7101 0.9097
0.0146 40.74 1100 0.4732 0.6599 0.7638 0.7080 0.9097
0.0146 44.44 1200 0.4727 0.6667 0.7717 0.7153 0.9110
0.0146 48.15 1300 0.4774 0.6531 0.7559 0.7007 0.9097
0.0146 51.85 1400 0.4780 0.6599 0.7638 0.7080 0.9097
0.0128 55.56 1500 0.4785 0.6599 0.7638 0.7080 0.9097

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.