gpt2-kl_001_03_hscnspecial-hs_cn
This model is a fine-tuned version of gpt2-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5521
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 21
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
73.5197 | 0.02 | 10 | 69.5785 |
46.0808 | 0.04 | 20 | 32.9820 |
13.5502 | 0.06 | 30 | 10.6512 |
6.7525 | 0.08 | 40 | 4.2586 |
2.8056 | 0.1 | 50 | 2.0866 |
1.3788 | 0.12 | 60 | 1.1292 |
1.2289 | 0.14 | 70 | 0.9021 |
0.9622 | 0.16 | 80 | 0.7473 |
0.7371 | 0.18 | 90 | 0.6521 |
0.7113 | 0.2 | 100 | 0.6246 |
0.6374 | 0.22 | 110 | 0.6168 |
0.6234 | 0.24 | 120 | 0.5887 |
0.6292 | 0.26 | 130 | 0.5813 |
0.6154 | 0.28 | 140 | 0.5762 |
0.5948 | 0.3 | 150 | 0.5718 |
0.5784 | 0.32 | 160 | 0.5694 |
0.5132 | 0.34 | 170 | 0.5701 |
0.625 | 0.36 | 180 | 0.5649 |
0.6225 | 0.38 | 190 | 0.5578 |
0.5756 | 0.4 | 200 | 0.5559 |
0.6848 | 0.42 | 210 | 0.5547 |
0.6253 | 0.44 | 220 | 0.5502 |
0.5286 | 0.46 | 230 | 0.5511 |
0.5537 | 0.48 | 240 | 0.5483 |
0.5466 | 0.5 | 250 | 0.5512 |
0.5536 | 0.52 | 260 | 0.5467 |
0.5509 | 0.54 | 270 | 0.5446 |
0.5801 | 0.56 | 280 | 0.5524 |
0.5775 | 0.58 | 290 | 0.5440 |
0.5355 | 0.6 | 300 | 0.5414 |
0.5483 | 0.62 | 310 | 0.5445 |
0.6389 | 0.64 | 320 | 0.5420 |
0.506 | 0.66 | 330 | 0.5521 |
Framework versions
- Transformers 4.29.0.dev0
- Pytorch 1.12.0a0+bd13bc6
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.