gpt2-kl_01_04-hs_cn-loto_lgbt
This model is a fine-tuned version of gpt2-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5297
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 21
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
72.2334 | 0.03 | 10 | 64.5474 |
30.2905 | 0.06 | 20 | 17.8612 |
8.886 | 0.08 | 30 | 6.3404 |
3.4861 | 0.11 | 40 | 2.6744 |
1.6441 | 0.14 | 50 | 1.1987 |
0.9746 | 0.17 | 60 | 0.8715 |
1.0152 | 0.2 | 70 | 0.7307 |
0.7374 | 0.23 | 80 | 0.6868 |
0.6436 | 0.25 | 90 | 0.6203 |
0.7525 | 0.28 | 100 | 0.6001 |
0.6146 | 0.31 | 110 | 0.5946 |
0.5676 | 0.34 | 120 | 0.5914 |
0.563 | 0.37 | 130 | 0.5716 |
0.6439 | 0.4 | 140 | 0.5743 |
0.5706 | 0.42 | 150 | 0.5702 |
0.689 | 0.45 | 160 | 0.5696 |
0.5986 | 0.48 | 170 | 0.5557 |
0.6159 | 0.51 | 180 | 0.5606 |
0.5925 | 0.54 | 190 | 0.5498 |
0.6124 | 0.57 | 200 | 0.5496 |
0.559 | 0.59 | 210 | 0.5501 |
0.6202 | 0.62 | 220 | 0.5544 |
0.6504 | 0.65 | 230 | 0.5486 |
0.697 | 0.68 | 240 | 0.5528 |
0.5171 | 0.71 | 250 | 0.5522 |
0.6247 | 0.74 | 260 | 0.5390 |
0.5882 | 0.76 | 270 | 0.5350 |
0.5941 | 0.79 | 280 | 0.5339 |
0.5673 | 0.82 | 290 | 0.5321 |
0.6336 | 0.85 | 300 | 0.5307 |
0.5581 | 0.88 | 310 | 0.5264 |
0.5499 | 0.91 | 320 | 0.5251 |
0.5626 | 0.93 | 330 | 0.5227 |
0.5443 | 0.96 | 340 | 0.5205 |
0.6252 | 0.99 | 350 | 0.5215 |
0.5427 | 1.02 | 360 | 0.5241 |
0.5231 | 1.05 | 370 | 0.5297 |
Framework versions
- Transformers 4.28.0
- Pytorch 1.11.0+cu113
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.