gpt2-kl_01_07_hscnspecial-hs_cn
This model is a fine-tuned version of gpt2-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5377
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 21
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
73.5948 | 0.02 | 10 | 69.5786 |
46.1586 | 0.04 | 20 | 32.9619 |
13.6007 | 0.06 | 30 | 10.6513 |
6.8042 | 0.08 | 40 | 4.2289 |
2.8577 | 0.1 | 50 | 2.1080 |
1.447 | 0.12 | 60 | 1.1006 |
1.2972 | 0.14 | 70 | 0.9296 |
0.9482 | 0.16 | 80 | 0.7053 |
0.7817 | 0.18 | 90 | 0.7118 |
0.7763 | 0.2 | 100 | 0.6232 |
0.6719 | 0.22 | 110 | 0.5972 |
0.6852 | 0.24 | 120 | 0.5835 |
0.7033 | 0.26 | 130 | 0.5850 |
0.6782 | 0.28 | 140 | 0.5815 |
0.6635 | 0.3 | 150 | 0.5757 |
0.6405 | 0.32 | 160 | 0.5796 |
0.5739 | 0.34 | 170 | 0.5705 |
0.7139 | 0.36 | 180 | 0.5606 |
0.6883 | 0.38 | 190 | 0.5592 |
0.6429 | 0.4 | 200 | 0.5586 |
0.7397 | 0.42 | 210 | 0.5511 |
0.6993 | 0.44 | 220 | 0.5484 |
0.5946 | 0.46 | 230 | 0.5515 |
0.6172 | 0.48 | 240 | 0.5473 |
0.6077 | 0.5 | 250 | 0.5442 |
0.6148 | 0.52 | 260 | 0.5435 |
0.6213 | 0.54 | 270 | 0.5425 |
0.6431 | 0.56 | 280 | 0.5414 |
0.6459 | 0.58 | 290 | 0.5392 |
0.604 | 0.6 | 300 | 0.5394 |
0.603 | 0.62 | 310 | 0.5368 |
0.7207 | 0.64 | 320 | 0.5387 |
0.5689 | 0.66 | 330 | 0.5407 |
0.5721 | 0.68 | 340 | 0.5377 |
Framework versions
- Transformers 4.29.0.dev0
- Pytorch 1.12.0a0+bd13bc6
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.