a2c-PandaReachDense-v2 / config.json
Bandika's picture
Initial commit
7fa8459
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8712e83820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8712e7ffc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681682065113437493, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKifZPjpqeDulQxs/KifZPjpqeDulQxs/KifZPjpqeDulQxs/KifZPjpqeDulQxs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIwsEv5p2kj9Vtk4/tGuUv265NL8oy+W+YEioP3vXxb7oUhe9rfmvP693b78VXho/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAqJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz0qJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz0qJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz0qJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42412692 0.00379051 0.6065009 ]\n [0.42412692 0.00379051 0.6065009 ]\n [0.42412692 0.00379051 0.6065009 ]\n [0.42412692 0.00379051 0.6065009 ]]", "desired_goal": "[[-0.51579493 1.1442444 0.80746967]\n [-1.1595368 -0.70595443 -0.44881558]\n [ 1.3147087 -0.3864096 -0.0369443 ]\n [ 1.374807 -0.93542 0.6029981 ]]", "observation": "[[ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]\n [ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]\n [ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]\n [ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHvuOPcjFjb2VaEw+fKENvBSKpb2rFj0+NyeqPT7ZTr1lltw99f0MPVNNNr0b5JE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06981491 -0.06922489 0.1996177 ]\n [-0.00864446 -0.08082977 0.18465678]\n [ 0.08308261 -0.05050015 0.10770873]\n [ 0.03442188 -0.04450734 0.28494343]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImpSCbi+p8r+UhpRSlIwBbJRLMowBdJRHQLGVODZDiOx1fZQoaAZoCWgPQwjKb9HJUiv0v5SGlFKUaBVLMmgWR0CxlQ2FFlTWdX2UKGgGaAloD0MInUfF/x1R9r+UhpRSlGgVSzJoFkdAsZTcUnG83HV9lChoBmgJaA9DCKFmSBXFa/e/lIaUUpRoFUsyaBZHQLGUsB+nZTR1fZQoaAZoCWgPQwgUI0vmWN7cv5SGlFKUaBVLMmgWR0CxljZV4oqkdX2UKGgGaAloD0MIQfLOoQyV9r+UhpRSlGgVSzJoFkdAsZYMScslLXV9lChoBmgJaA9DCL9EvHX+7e+/lIaUUpRoFUsyaBZHQLGV2065oXd1fZQoaAZoCWgPQwhaZhGKrSDwv5SGlFKUaBVLMmgWR0Cxla81TBIndX2UKGgGaAloD0MII6MDkrBv9b+UhpRSlGgVSzJoFkdAsZcSQ3gk1XV9lChoBmgJaA9DCEj43t+g/fW/lIaUUpRoFUsyaBZHQLGW52wmmch1fZQoaAZoCWgPQwhlxAWgUbrVv5SGlFKUaBVLMmgWR0CxlrZG4I8hdX2UKGgGaAloD0MITGw+rg2V6L+UhpRSlGgVSzJoFkdAsZaJ6AvtdHV9lChoBmgJaA9DCBdFD3wM1u+/lIaUUpRoFUsyaBZHQLGX+bd8ArB1fZQoaAZoCWgPQwhODp90IkHrv5SGlFKUaBVLMmgWR0Cxl87qQiiZdX2UKGgGaAloD0MIDJQUWADT77+UhpRSlGgVSzJoFkdAsZed5qubJHV9lChoBmgJaA9DCF+2nbZGhO2/lIaUUpRoFUsyaBZHQLGXcdSl3yJ1fZQoaAZoCWgPQwirQC0GD9Pgv5SGlFKUaBVLMmgWR0CxmK/JV81GdX2UKGgGaAloD0MI2V2gpMAC1b+UhpRSlGgVSzJoFkdAsZiEd4mkWXV9lChoBmgJaA9DCHSWWYRiK+i/lIaUUpRoFUsyaBZHQLGYUucc2it1fZQoaAZoCWgPQwj3kzE+zF7vv5SGlFKUaBVLMmgWR0CxmCY+8oQWdX2UKGgGaAloD0MIDcUdb/Jb07+UhpRSlGgVSzJoFkdAsZk2E384xXV9lChoBmgJaA9DCP91btqM0+W/lIaUUpRoFUsyaBZHQLGZCtnPE891fZQoaAZoCWgPQwgj3GRUGYb2v5SGlFKUaBVLMmgWR0CxmNlpwjt5dX2UKGgGaAloD0MIMo/8wcBz7b+UhpRSlGgVSzJoFkdAsZis4VARkHV9lChoBmgJaA9DCI0o7Q2+8PC/lIaUUpRoFUsyaBZHQLGZt2DQJHB1fZQoaAZoCWgPQwjEmV/NAYLpv5SGlFKUaBVLMmgWR0CxmYwzpHI7dX2UKGgGaAloD0MI8UknEkw16r+UhpRSlGgVSzJoFkdAsZlauJUHZHV9lChoBmgJaA9DCAsKgzKNpum/lIaUUpRoFUsyaBZHQLGZLjHn2Zl1fZQoaAZoCWgPQwhxdJXurjPkv5SGlFKUaBVLMmgWR0CxmkzY7JXAdX2UKGgGaAloD0MIjEl/L4WH67+UhpRSlGgVSzJoFkdAsZohqBVdX3V9lChoBmgJaA9DCI0JMZdUbeu/lIaUUpRoFUsyaBZHQLGZ8Dfm9xp1fZQoaAZoCWgPQwjbT8b4MHvuv5SGlFKUaBVLMmgWR0CxmcQ8nuzAdX2UKGgGaAloD0MIN6lorP2d5L+UhpRSlGgVSzJoFkdAsZrScUdq+XV9lChoBmgJaA9DCAHAsWfPZeK/lIaUUpRoFUsyaBZHQLGapyz5XU91fZQoaAZoCWgPQwgZxt0gWivhv5SGlFKUaBVLMmgWR0CxmnW6oVEedX2UKGgGaAloD0MIBf2FHjF67L+UhpRSlGgVSzJoFkdAsZpJIre67XV9lChoBmgJaA9DCOrPfqSIDNq/lIaUUpRoFUsyaBZHQLGbUwiaAnV1fZQoaAZoCWgPQwj/6Js0DYrxv5SGlFKUaBVLMmgWR0CxmyfSQYDUdX2UKGgGaAloD0MIaK8+Hvru6r+UhpRSlGgVSzJoFkdAsZr2WAwwkHV9lChoBmgJaA9DCE7RkVz+w/G/lIaUUpRoFUsyaBZHQLGaydfb9Ih1fZQoaAZoCWgPQwjSViWRfVD0v5SGlFKUaBVLMmgWR0Cxm9Y3zcyndX2UKGgGaAloD0MIrwlpjUEn6L+UhpRSlGgVSzJoFkdAsZurC2tuDXV9lChoBmgJaA9DCMVW0LTEyuO/lIaUUpRoFUsyaBZHQLGbeZmZmZp1fZQoaAZoCWgPQwi7Cik/qbbwv5SGlFKUaBVLMmgWR0Cxm00BXCCSdX2UKGgGaAloD0MIpvELryT587+UhpRSlGgVSzJoFkdAsZxRiBoVVXV9lChoBmgJaA9DCEBMwoU8gs+/lIaUUpRoFUsyaBZHQLGcJkVvddp1fZQoaAZoCWgPQwiRfvs6cE7nv5SGlFKUaBVLMmgWR0Cxm/S2hIvrdX2UKGgGaAloD0MIbAcj9gmg77+UhpRSlGgVSzJoFkdAsZvICyQgcXV9lChoBmgJaA9DCOF7f4P26t6/lIaUUpRoFUsyaBZHQLGczovi97F1fZQoaAZoCWgPQwil2NE41O/hv5SGlFKUaBVLMmgWR0CxnKNAxBVudX2UKGgGaAloD0MIHjS77q0I8b+UhpRSlGgVSzJoFkdAsZxxxWDHwXV9lChoBmgJaA9DCJilnZrLjfO/lIaUUpRoFUsyaBZHQLGcRSIP9UF1fZQoaAZoCWgPQwiki00rhUDXv5SGlFKUaBVLMmgWR0CxnVYre67NdX2UKGgGaAloD0MI06Opnsw/5L+UhpRSlGgVSzJoFkdAsZ0rBzmwJXV9lChoBmgJaA9DCJRqn47HDN+/lIaUUpRoFUsyaBZHQLGc+aJhvzh1fZQoaAZoCWgPQwiy8zY2O1Lpv5SGlFKUaBVLMmgWR0CxnM0kv9LpdX2UKGgGaAloD0MIY+3vbI9e87+UhpRSlGgVSzJoFkdAsZ3aw5eZ5XV9lChoBmgJaA9DCGBY/nxbsOi/lIaUUpRoFUsyaBZHQLGdr5qubI91fZQoaAZoCWgPQwiNRj6veOrlv5SGlFKUaBVLMmgWR0CxnX4kE9t/dX2UKGgGaAloD0MI5urHJvkR0L+UhpRSlGgVSzJoFkdAsZ1RktmL+HV9lChoBmgJaA9DCJUnEHaKVe+/lIaUUpRoFUsyaBZHQLGeWVVghKV1fZQoaAZoCWgPQwiOO6WD9X/Yv5SGlFKUaBVLMmgWR0Cxni4fCAMEdX2UKGgGaAloD0MICRoziXpB67+UhpRSlGgVSzJoFkdAsZ38k0JnhHV9lChoBmgJaA9DCKM6Hch6asu/lIaUUpRoFUsyaBZHQLGdz/UvwmV1fZQoaAZoCWgPQwinrnyW58Htv5SGlFKUaBVLMmgWR0CxnttiQT24dX2UKGgGaAloD0MImL7XEByX6r+UhpRSlGgVSzJoFkdAsZ6wM/hVEXV9lChoBmgJaA9DCKRt/InKBuq/lIaUUpRoFUsyaBZHQLGefrc0tRN1fZQoaAZoCWgPQwhtqYO8Hsznv5SGlFKUaBVLMmgWR0CxnlIkNWludX2UKGgGaAloD0MI9YQlHlC25L+UhpRSlGgVSzJoFkdAsZ9iKsMiKXV9lChoBmgJaA9DCNe/6zNn/ee/lIaUUpRoFUsyaBZHQLGfNwLE1l51fZQoaAZoCWgPQwhiaHVyhuLuv5SGlFKUaBVLMmgWR0CxnwWWyC4CdX2UKGgGaAloD0MIsVBrmnec2r+UhpRSlGgVSzJoFkdAsZ7ZDzAerHV9lChoBmgJaA9DCNV1qKYk6+e/lIaUUpRoFUsyaBZHQLGf5v+wTuh1fZQoaAZoCWgPQwgp6sw9JHzpv5SGlFKUaBVLMmgWR0Cxn7u3+dbxdX2UKGgGaAloD0MIjBNf7ShO4r+UhpRSlGgVSzJoFkdAsZ+KRvFWGXV9lChoBmgJaA9DCFG8ytqmeOG/lIaUUpRoFUsyaBZHQLGfXbD/EO11fZQoaAZoCWgPQwgZVYZxN4jnv5SGlFKUaBVLMmgWR0CxoGVjd56ddX2UKGgGaAloD0MI8gcDz72H1r+UhpRSlGgVSzJoFkdAsaA6J9AoonV9lChoBmgJaA9DCMGPatjvieO/lIaUUpRoFUsyaBZHQLGgCI5YHPh1fZQoaAZoCWgPQwg5nPnVHCDdv5SGlFKUaBVLMmgWR0Cxn9vhAGB4dX2UKGgGaAloD0MI4NVyZyYY17+UhpRSlGgVSzJoFkdAsaDkoNNJv3V9lChoBmgJaA9DCNriGp/J/uG/lIaUUpRoFUsyaBZHQLGguV81Gb11fZQoaAZoCWgPQwit+IbCZ2vtv5SGlFKUaBVLMmgWR0CxoIfZqVQidX2UKGgGaAloD0MIwFlKlpNQ5b+UhpRSlGgVSzJoFkdAsaBbUhFEzHV9lChoBmgJaA9DCGOYE7TJ4ee/lIaUUpRoFUsyaBZHQLGhY+H8CPp1fZQoaAZoCWgPQwgD0ZMyqaHTv5SGlFKUaBVLMmgWR0CxoTinpB5YdX2UKGgGaAloD0MIk4ychT3tzr+UhpRSlGgVSzJoFkdAsaEHQzDXOHV9lChoBmgJaA9DCJQ0f0xr0+q/lIaUUpRoFUsyaBZHQLGg2rHlwLp1fZQoaAZoCWgPQwgvM2yU9ZvFv5SGlFKUaBVLMmgWR0Cxoeq0lZ5idX2UKGgGaAloD0MIXtcv2A3b7r+UhpRSlGgVSzJoFkdAsaG/eSB9TnV9lChoBmgJaA9DCGaEtwchIO6/lIaUUpRoFUsyaBZHQLGhjmelKsd1fZQoaAZoCWgPQwjS/3ItWgDyv5SGlFKUaBVLMmgWR0CxoWHkLhJidX2UKGgGaAloD0MIFjPC24MQzL+UhpRSlGgVSzJoFkdAsaJqG5+Yt3V9lChoBmgJaA9DCIygMZOoV/G/lIaUUpRoFUsyaBZHQLGiPvr4WUN1fZQoaAZoCWgPQwhtqBjnb0LPv5SGlFKUaBVLMmgWR0Cxog13dKukdX2UKGgGaAloD0MIlgSoqWVr2r+UhpRSlGgVSzJoFkdAsaHgz3yqdnV9lChoBmgJaA9DCJaxoZv9gcy/lIaUUpRoFUsyaBZHQLGjPgeii7F1fZQoaAZoCWgPQwiAYmTJHEvnv5SGlFKUaBVLMmgWR0CxoxMv/R3NdX2UKGgGaAloD0MI3xrYKsHi2r+UhpRSlGgVSzJoFkdAsaLiJKraNHV9lChoBmgJaA9DCIc2ABsQId6/lIaUUpRoFUsyaBZHQLGitfVZs9B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 46875, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}